WAITING FOR THE END OF THE WORLD?

New Perspectives on Natural Disasters in Medieval Europe

Edited by

Christopher M. Gerrard, Paolo Forlin and Peter J. Brown
CONTENTS

List of figures and plates
Contributors
Preface

1. **Researching natural disasters in the later Middle Ages**
PETER J. BROWN, PAOLO FORLIN AND CHRISTOPHER M. GERRARD

PART 1
Tectonic hazards

2. **Rituals of resilience: The interpretative archaeology of post-seismic recovery in medieval Europe**
PAOLO FORLIN

3. **Medieval earthquakes in Italy: Perceptions and reactions**
BRUNO FIGLIUOLO

4. **Seismic adaptation in the Latin churches of Cyprus**
RORY O’NEILL

5. **Architectural heritage and ancient earthquakes in Italy: The constraints and potential of archaeoseismological research applied to medieval buildings**
MARGHERITA GANZ AND ANDREA ARRIGHETTI

6. **Medieval tsunamis in the Mediterranean and Atlantic: Towards an archaeological perspective**
CHRISTOPHER M. GERRARD
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Volcanic eruptions and historical landscape on Lanzarote, Canary Islands, Spain</td>
<td>José de León Hernández</td>
<td>126</td>
</tr>
<tr>
<td>8</td>
<td>‘The harvest of despair’: Catastrophic fear and the understanding of risk in the shadow of Mount Etna, Italy</td>
<td>Lauren Ware and Lee John Whittington</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>PART II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe storms and hydrological hazards</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>Mitigating riverine flood risk in medieval England</td>
<td>Richard Jones and Susan Kilby</td>
<td>165</td>
</tr>
<tr>
<td>10</td>
<td>Tide and trauma: Tangible and intangible impacts of the storms of 1287 and 1288</td>
<td>Peter J. Brown</td>
<td>183</td>
</tr>
<tr>
<td>11</td>
<td>Disaster or everyday risk?: Perceiving, managing and commemorating floods in medieval central Europe</td>
<td>Christian Rohr</td>
<td>201</td>
</tr>
<tr>
<td>12</td>
<td>Recovering from catastrophe: How medieval society in England coped with disasters</td>
<td>Christopher Dyer</td>
<td>218</td>
</tr>
<tr>
<td>13</td>
<td>Fear, matter and miracles: Personal protection and coping with disasters through material culture c1200–1600</td>
<td>Eleanor R. Standley</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>PART III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biophysical hazards</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>14</td>
<td>Digging up the victims of the Black Death: A bioarchaeological perspective on the second plague pandemic</td>
<td>Sacha Kacki</td>
<td>259</td>
</tr>
<tr>
<td>15</td>
<td>Preserving the ordinary: Social resistance during the second pandemic plagues in the Low Countries</td>
<td>Daniel R. Curtis</td>
<td>280</td>
</tr>
</tbody>
</table>
CONTENTS

16 Reconstructing the impact of 14th-century demographic disasters on late medieval rural communities in England 298
 CARENZA LEWIS

17 Recognising catastrophic cattle-mortality events in England and their repercussions 328
 LOUISA J. GIDNEY

18 Medieval archaeology and natural disasters: Looking towards the future 345
 PAOLO FORLIN, CHRISTOPHER M. GERRARD AND PETER J. BROWN

PART IV
Catalogue 361

19 Catalogue of medieval disasters 363
 PETER J. BROWN, PAOLO FORLIN AND CHRISTOPHER M. GERRARD

 The volcanic eruptions of AD 536 and 540 363
 The 1117 earthquake in northern Italy 366
 The 1222 Cyprus earthquake 368
 The 1248 Mont Granier landslide 371
 The 1257 Samalas eruption 372
 The 1315–1322 agrarian crisis 374
 The 1342 ‘millennium’ flood 375
 The 1345 Gauldalen slide and flood event 378
 The 1348 Carinthia and Friuli earthquake 380
 ‘Savage attack’: Reactions to the Black Death in Winchester in 1348–49 and after 383
 The 1356 Basel earthquake 385
 The 1362 ‘great drowning of men’ (grote mandränke) 387
 The 1382 Straits of Dover earthquake 389
 The 1421 St Elizabeth’s Day flood 391
 Arson at Sherborne Abbey, Dorset, in 1437 392
 The sweating sickness in late 15th-century and 16th-century England 394
 Excavating the 1522 earthquake and landslide on the island of São Miguel, Azores 396
 The 1531 Lisbon earthquake and tsunami 398
 The 1540 pan-European mega-drought 400
 The rain in Spain: Early 16th-century drought and reactions 403

Index 417
FIGURES AND PLATES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The devastating impact of the 2004 Indian Ocean tsunami at Meulaboh (Indonesia)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Cows killed by rinderpest in South Africa, 1869</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>A word equation conceptualising the risk of any given natural disaster</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Theoretical frameworks of disaster</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>‘Risk management flowchart’</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Seismic destruction at El Castillejo, Granada (Spain)</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Fire in Delft, the Netherlands, in 1536</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Saranda Kolones, Cyprus. A seismically destroyed pillar of the castle under excavation</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>An inscription listing the damage inflicted to Venice by the 1348 earthquake</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Excavations at Vila Franca do Campo, Azores (Portugal)</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Chapel of the Corpus Christi, Vera la Vieja, Almeria (Spain)</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Earthquake ‘wells’, Dyrrachium (Albania)</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Wall-ties, L’Aquila (Italy)</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Renaissance wall-ties, L’Aquila (Italy)</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Santa Maria di Collemaggio, L’Aquila (Italy)</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>The Palace of the Commune and the Church of Sant’Andrea, Orvieto (Italy)</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>The Palace of the People, Orvieto (Italy)</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Sant’Angelo in Spata, Viterbo (Italy)</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>The bell tower of the Cathedral of Veroli (Italy)</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>The basilica of San Nicola, Bari (Italy)</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Pier base at the Cathedral of St George of the Greeks, Famagusta (Cyprus)</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Retrofitted arches at the Arablar Mosque (Church of Stavros Tou Missirikou), Nicosia (Cyprus)</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Rebuilt bays at the Cathedral of St Nicholas (Lala Mustafa Pasha Mosque), Famagusta (Cyprus)</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>The Church of St Mary of Carmel, Famagusta (Cyprus)</td>
<td>72</td>
</tr>
<tr>
<td>FIGURES AND PLATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4.5 Ambulatory hemicycle at the Cathedral of Holy Wisdom, Nicosia (Cyprus)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>4.6 Exterior view, SS Peter and Paul (Sinan Pasha Mosque), Famagusta (Cyprus)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>5.1 The church of Santi Vittore e Corona, Veneto (Italy). Phases of construction/destruction</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>5.2 Criteria for the recognition of stratified earthquake damage</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>5.3 The north-west facade and section of the church of Santi Vittore e Corona</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>5.4 Damage on the walls of the transept of Santi Vittore e Corona</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>5.5 Cracks on the surviving parts of the ancient bell towers of Santi Vittore e Corona</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>5.6 The facade of the church of Sant’Agata del Mugello, Florence (Italy)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>5.7 Chain in limestone, bell tower of the San Lorenzo church in Borgo San Lorenzo, Florence (Italy)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>5.8 Chrono-typological atlas of the ‘anti-seismic measures’ of the Mugello area (Italy)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>6.1 Major tsunami events in the Atlantic and the Mediterranean in the later Middle Ages</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>6.2 Key tsunami locations in the Mediterranean and main places mentioned in the text</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>6.3 German woodcut, possibly Almeria (Spain) in 1523</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>6.4 Tsunami boulders west of Lisbon (Portugal)</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>6.5 Rip-up clasts on Nissi Beach, Ayia Napa (Cyprus)</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>6.6 Impacts of the 1755 Lisbon tsunami along the Algarve coast in southern Portugal</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>7.1 Lanzarote (Canary Islands, Spain) and main places mentioned in the text</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>7.2 Field-walking on Lanzarote</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>7.3 A taro on Lanzarote before excavation</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>7.4 Archaeological excavation in La Geria in 2000, Lanzarote</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>7.5 Modern view of La Geria, Lanzarote, where the late medieval village lies buried</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>7.6 Religious procession to the Hermitage of the Volcanoes in around 1920, Lanzarote</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>7.7 Buried water cistern (aljibe) under volcanic ash in La Geria, Lanzarote</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>7.8 Archaeological excavation in Zonzamas, Fuerteventura</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>8.1 People fleeing from the tsunami wave in Hilo, Hawaii, in 1946 (USA)</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>8.2 A mother visiting her house in Avezzano destroyed by the 1915 Fucino earthquake (Italy)</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

vii
<table>
<thead>
<tr>
<th>FIGURES AND PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 ‘Noah’s marks’ at Worcester on the River Severn (UK) 166</td>
</tr>
<tr>
<td>9.2 Broadwas, Worcestershire (UK), LiDAR digital elevation model 171</td>
</tr>
<tr>
<td>9.3 Ramsbottom, Lancashire (UK), LiDAR digital elevation model 172</td>
</tr>
<tr>
<td>9.4 Maintenance and excavation of medieval ditches 176</td>
</tr>
<tr>
<td>10.1 Historical sources recording the storms of 1287 and 1288 186</td>
</tr>
<tr>
<td>10.2 Locations affected by storms and/or floods across the coasts of the North Sea in 1287 and 1288 188</td>
</tr>
<tr>
<td>10.3 Map showing the location of Heigham Bridge, Norfolk, and cross-section of the bridge with phasing 190</td>
</tr>
<tr>
<td>10.4 Archaeological section from the Church Road site, New Romney (UK) 192</td>
</tr>
<tr>
<td>11.1 Map of modern Austria 202</td>
</tr>
<tr>
<td>11.2 Flood mark testifying to the ‘millennium flood’ on the River Inn in 1501 at Mittich (Lower Bavaria) 206</td>
</tr>
<tr>
<td>11.3 Engelhartszell, Upper Austria: Water level of 1501 207</td>
</tr>
<tr>
<td>11.4 Wels, Upper Austria: Copperplate print by Matthaeus Merian, 1649 208</td>
</tr>
<tr>
<td>11.5 The accounts of the bridge master of Wels, entry from 1443 209</td>
</tr>
<tr>
<td>11.6 Floods of the River Traun, 1497–1510 211</td>
</tr>
<tr>
<td>11.7 Expenses of the bridge master of Wels for timber, 1471–1520 211</td>
</tr>
<tr>
<td>12.1 Hamlet of Bickley in Knighton-on-Teme, Worcestershire (UK) 223</td>
</tr>
<tr>
<td>12.2 Earthworks at Crowle, Worcestershire (UK) 224</td>
</tr>
<tr>
<td>12.3 Severn Estuary (UK) in the Middle Ages, showing floods in 1483 225</td>
</tr>
<tr>
<td>12.4 Henbury-in-Salt-Marsh, Gloucestershire (UK). Debts owed by manorial officials 227</td>
</tr>
<tr>
<td>12.5 Plan of Shipston-on-Stour, Warwickshire, formerly Worcestershire (UK), at the time of the fire of 1478 228</td>
</tr>
<tr>
<td>12.6 Payments to the Kitchener of Worcester Cathedral Priory, 1478–83; and rents for market stalls, 1467–90 229</td>
</tr>
<tr>
<td>13.1 Copper-alloy buckle found in Suffolk (UK) 242</td>
</tr>
<tr>
<td>13.2 The silver petit blanc as found in situ in the remains of the Newport ship (UK) 244</td>
</tr>
<tr>
<td>13.3 Silver pendant formed by an equal-armed cross found near Orford, Suffolk (UK) 248</td>
</tr>
<tr>
<td>13.4 Silver pendant found near Ware, East Hertfordshire (UK) 249</td>
</tr>
<tr>
<td>14.1 Multiple burials at some medieval plague cemeteries 261</td>
</tr>
<tr>
<td>14.2 Location map of European burial grounds related to the Black Death and later plague epidemics 263</td>
</tr>
<tr>
<td>14.3 Age-at-death distribution of non-adults from plague cemeteries 266</td>
</tr>
<tr>
<td>14.4 Palaeodemographic ratios in skeletal assemblages compared with living pre-industrial populations 267</td>
</tr>
<tr>
<td>FIGURES AND PLATES</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>14.5 Number of stress episodes per individual, as reconstructed from enamel hypoplasia</td>
</tr>
<tr>
<td>14.6 Diachronic changes in burial treatment of plague victims over the second pandemic period</td>
</tr>
<tr>
<td>15.1 ‘Runaways fleeing from the plague’, 1630</td>
</tr>
<tr>
<td>15.2 Criminal offences in plague and non-plague years</td>
</tr>
<tr>
<td>16.1 Test-pits in currently occupied rural settlements (CORS) in eastern England (UK)</td>
</tr>
<tr>
<td>16.2 Hillington, Norfolk (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.3 Hillington, Norfolk (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.4 Binham, Norfolk (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.5 Binham, Norfolk (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.6 Ashwell, Hertfordshire (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.7 Ashwell, Hertfordshire (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.8 Shillington, Bedfordshire (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.9 Shillington, Bedfordshire (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.10 Carleton Rode, Norfolk (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.11 Carleton Rode, Norfolk (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.12 Little Hallingbury, Essex (UK). Test-pits with pottery dating from the early 12th to mid-14th centuries</td>
</tr>
<tr>
<td>16.13 Little Hallingbury, Essex (UK). Test-pits with pottery dating from the late 14th to mid-16th centuries</td>
</tr>
<tr>
<td>16.14 Comparative maps of East Anglia (UK) showing CORS results</td>
</tr>
<tr>
<td>16.15 Maps of East Anglia (UK) showing the distribution of deserted settlements and medieval farming regions</td>
</tr>
<tr>
<td>17.1 Woodcut depicting a rinderpest outbreak in the Netherlands in 1745</td>
</tr>
<tr>
<td>17.2 The Shapwick pit, Somerset (UK), with articulated cattle skeletons</td>
</tr>
<tr>
<td>17.3 Hartlepool Town Square, County Durham (UK). Animal bone data for cattle, sheep/goat and pig</td>
</tr>
<tr>
<td>17.4 Ripon Market Place, North Yorkshire (UK). Animal bone data for cattle, sheep/goat and pig</td>
</tr>
</tbody>
</table>
FIGURES AND PLATES

17.5 Flixborough, Lincolnshire (UK). Relative frequency of major domestic animals 339
18.1 The adaptive cycle and the risk management flowchart 347
18.2 Postcard showing a group of people in the aftermath of the 1908 earthquake of Messina (Italy) 349
18.3 A 17th-century ex voto showing a leper house in Vienna (Austria) 351
18.4 Central Italy earthquake, 2016: The statue of St Benedict with the destroyed basilica of Norcia (Italy) 353
19.1 Location map for sites mentioned in the catalogue 364
19.2 The Eyjafjallajokull volcano (Iceland) 365
19.3 The inscription surmounting the portal of the Abbey of Nonantola (Italy) 367
19.4 Aerial view of the castle of Saranda Kolones (Cyprus) 369
19.5 The northern side of the Mount Granier (France) 371
19.6 The remains of the Samalas volcano, Lombok Island (Indonesia) 373
19.7 Inscription recording the level reached by the flood of 1342 in Hann Munden (Germany) 377
19.8 Excerpt from a map detailing an interpretation of the 1345 Gauldalen slide (Norway) 379
19.9 Dobratsch massif. A boulder from the 1348 rockfall 381
19.10 The west front of Winchester Cathedral (UK) 384
19.11 Facade of Basel Cathedral (Switzerland) 386
19.12 A graffito at St Mary’s, Ashwell (UK), mentioning the outbreak of plague in 1361 and the storm of St Maur’s Day in 1362 388
19.13 The facade of Canterbury Cathedral (UK) 390
19.14 The nave of Sherborne Abbey (UK) 392
19.15 A 16th-century illustration of sweating sickness taken from a German medical treatise 394
19.16 Archaeological finds beneath the 1522 landslide deposit in Vila Franca do Campo, Azores (Portugal) 397
19.17 Alcanede Castle, Santarem (Portugal) 399
19.18 Tiedexer Strase, Einbeck (Germany) 402
19.19 Churches and rogation ceremonies in Zaragoza (Spain) 404

COLOUR PLATES

1. The burial of plague victims at Saint Jacob’s parish in Leuven (Belgium), in 1578
2. Skeletal remains, Dyrrachium (Albania)
3. Plans and section of the Santi Vittore e Corona church, Feltre (Italy)

x
FIGURES AND PLATES

4. Nomenclature for a tsunami and its impacts
5. A taro on Lanzarote during excavation in 2000
6. A crucifix in the Valle del Bove, Mount Etna (Italy)
7. Archaeological excavations in New Romney, Kent (UK), and a schematic plan of the impact of the storms of 1287/88
8. Processional cross found at the church of West Farleigh, Kent (UK)
9. San Francisco mural ‘Earthquake and fire of 1906’ by Anton Refregier
10. ‘St Sebastian prays for the plague victims’, by Josse Lieferinxe, 1497–1499
11. The left panel of the St Elizabeth’s Day Flood altarpiece
CONTRIBUTORS

Andrea Arrighetti is now a teaching fellow and researcher at the Department of Historical Sciences and Cultural Heritage at the University of Siena, Italy. He gained his PhD at the University of L’Aquila. He specializes in the archaeology of architecture, buildings survey, archaeoseismology and the application of new technologies to cultural heritage. His particular interests lie in medieval buildings, photogrammetry and structure from motion applications.

Peter J. Brown is a researcher who recently completed his PhD in the Department of Archaeology, Durham University, UK. His research considers the impact of natural disasters on medieval society and the different types of responses they adopted in the aftermath. His recent publications have investigated individual disaster case studies from a historical and archaeological perspective as well as the contribution of archaeology as a discipline to the study of historical events such as disasters.

Daniel R. Curtis is an Associate Professor at the Erasmus School for History, Culture and Communication, Erasmus University Rotterdam, the Netherlands. His research considers pre-modern societies’ resilience, vulnerability and adaptation to environmental shocks, and the different responses adopted by societies in different historical contexts. He has published widely on various aspects of historical plague, famine and flood disasters as well as the methodological considerations in approaching these types of topic.

Christopher Dyer is Emeritus Professor of History at the University of Leicester, UK. His research (into many branches of social and economic history, and landscape history) often combines the use of documentary and archaeological evidence. He has written on the management of land, standards of living, rural settlement, towns and long-term changes in the economy. He is currently completing a study of medieval peasants, with an emphasis on their positive contribution to social and economic development.

Bruno Figliuolo is Professor of Medieval History at the University of Udine, Italy. His research relates to many aspects of Italian medieval history and he is particularly interested in earthquakes, the sources which documented their occurrence and how contemporary people interpreted and reacted to these events. Stemming from his seminal work on the earthquake of 1456 in southern Italy, and other contributions investigating late medieval seismic events in the Mediterranean basin, he
CONTRIBUTORS

has conducted extensive studies of 15th-century Florentine diplomatic records and, more recently, contemporary humanistic sources.

Paolo Forlin is a Research Associate in the Department of Archaeology, Durham University, UK. In addition to a background in Italian medieval archaeology, in 2014–2016 he held an ERC Marie Sklodowska-Curie Fellowship in which he led the ARMEDEA project (Archaeology of Medieval Earthquakes in Europe AD 1000–1550) investigating the archaeological evidence for earthquakes in medieval Europe. He has published widely on this topic and is currently expanding this work through the Leverhulme Trust-funded ‘Risk and Resilience’ Project.

Margherita Ganz is currently researching for her PhD at the Department of Architecture and Urban Studies at the Politecnico of Milan, Italy, where her topic is the archaeoseismology of Venetian bell towers. She has previously published in Archeologia dell’Architettura on the evidence for seismic damage in Italian historic buildings.

Christopher M. Gerrard is Professor of Medieval Archaeology, Durham University, UK. He has wide research interests in the archaeology of the medieval period throughout Britain and the Mediterranean. As well as publishing on the archaeological evidence for natural disasters during the medieval period and directing related projects, his recent publications have focused on water resources, the archaeology of the Military Orders and the 17th-century mass graves recently discovered in Durham.

Louisa J. Gidney is a freelance archaeologist specialising in the study of faunal remains. She is interested in the practical management and care of livestock and how these considerations might affect archaeological interpretations. In addition to her contributions to many excavation reports, she has recently published articles on the comparison of data from modern cattle remains with archaeological assemblages, analysis of artefacts made from horse and cattle bones and the role of animals in late medieval society in Britain.

Richard Jones is Associate Professor of Landscape History at the Centre for English Local History, University of Leicester, UK. He has various research interests relating to medieval people and the landscapes they inhabited. In addition to recent research into early medieval water management and perception of rivers through a combination of place-name and geoarchaeological evidence, Richard has published widely on aspects of medieval settlement, manuring and other agricultural practices.

Sacha Kacki is a CNRS Researcher in the PACEA department, University of Bordeaux, France, and an Honorary Research Associate in the Department of Archaeology, Durham University, UK. His work focuses on the bioarchaeological evidence for plague and plague cemeteries. He has contributed to a number of research projects which have confirmed the presence of the pathogen Yersinia pestis among medieval populations and clarified the nature of the pathogen. His work also considers the demographic impact of plague epidemics and how contemporaries disposed of its victims thus shedding further light on the occurrence and impact of the disease.

Susan Kilby is a Research Fellow in the Institute for Name-Studies at the University of Nottingham, and a Visiting Fellow at the Centre for English Local History.
at the University of Leicester, UK. She is predominantly interested in the relationship between people and landscape in the Middle Ages, with a special emphasis on peasant mentalities. Her recent publications have examined peasants’ perceptions of the manorial environment, from their experience of space within the medieval settlement and their perspective on the organization of the wider landscape, to their consideration of the rural environment more generally.

José de León Hernández is Inspector Insular of Historic Heritage for the local government of Gran Canaria, Spain, which he has been since 1992 and has directed numerous archaeological projects and excavations on the Canary Islands. He obtained a PhD at Las Palmas University, Spain, in 2006 with a study of the landscape and settlements buried by 18th-century volcanic eruptions on Lanzarote.

Carenza Lewis is Professor for the Public Understanding of Research in the College of Arts at the University of Lincoln, UK. She has broad research interests relating to the archaeology of the medieval period including rural settlement, demography, landscape and childhood in the past. Her recent publications have centred on the methodological aspects relating to the investigation of medieval rural sites and engaging wider publics with research.

Rory O’Neill is a visiting scholar at the Department of the History of Art at the University of Pennsylvania and an Adjunct Professor of Architecture at Columbia University in New York, USA. His research centres on the structure of masonry buildings in the medieval period and the adaptations of architectural forms to seismic hazard, with a particular focus on modifications of the Gothic style in the eastern Mediterranean. In addition to archaeological investigations, he has developed physical simulation technologies that allow for rapid analysis of masonry structures under static and seismic loading, fostering collaboration between seismic engineers, archaeoseismologists and architectural historians.

Christian Rohr is Professor of Environmental History and Historical Climatology at the Institute of History, University of Bern, Switzerland. In addition to broad interests relating to medieval culture and beliefs, his research focuses on environmental and climatic hazards of the pre-instrumental period. As well as contributing to many climatic research projects, Christian has published specific case studies, including the Carinthia earthquake of 1348 and floods on the Traun and Danube, considering both the occurrence of these events and their reception by contemporary society.

Eleanor R. Standley is Associate Professor of Later Medieval Archaeology in the School of Archaeology and Curator of Medieval Archaeology in the Ashmolean Museum at the University of Oxford, UK. Her research focuses on later medieval small finds and how they can inform us about aspects of everyday life, covering themes from devotion to sexuality. She has recently published on the evidence for hand-spinning in the archaeological record and is currently researching the archaeology of emotion in the later medieval period.

Lauren Ware is Lecturer in Philosophy at the University of Kent, UK. Her main research interest is the philosophy of emotion, in particular the role of emotions in political and legal decision-making, risk, creativity, and teaching and learning. She
has recently published articles considering various aspects relating to the philosophy
of fear, the relation of love to virtue and moral education, and emotional suffering
as a result of criminal punishment.

Lee John Whittington is a researcher who completed his PhD and postdoctoral
fellowship in philosophy at the University of Edinburgh, UK. His research is on the
philosophy of luck, risk and chance. He argues for different methods of thinking
about and measuring risk and luck that focus on possibility rather than probability,
and is co-editor of the first curated volume on the philosophy of luck.
Back in 2011 I (Chris Gerrard) shared an office at Durham University with David Petley, a physical geographer who at that time held the Wilson Chair in Hazard and Risk and was director of the International Landslide Centre. We were both serving for a spell in more administrative university roles in the Faculty of Social Sciences and Health. Every morning, whatever time I arrived at work, Dave was already there writing his blog on landslides which he continues to maintain to this day (https://blogs.agu.org/landslideblog/).

To my shame, I knew very little about landslide mechanics but as we began to talk about our research, we learned more about our respective academic disciplines and saw ways in which our worlds had unknowingly collided. Dave gave me a copy of his co-edited textbook *Environmental hazards: Assessing risk and reducing disaster* as a guide. Then we began to wonder if there was scope for a review article on the ‘archaeology of disasters’, something which might draw our ideas together and provide a platform for something more. I went away and wrote (lots) about the Middle Ages and Dave gently encouraged me to think about themes such as hazard, risk and resilience with which I was less familiar. How did hazards become disasters, how did societies perceive these events and how did they react and evolve to reduce their vulnerability? The result of this ‘research conversation’ was a jointly written article in 2013 for the journal *Natural Hazards* (volume 69.1) entitled ‘A risk society? Environmental hazards, risk and resilience in the later Middle Ages in Europe’. As we discovered, not only did medieval communities respond continually to environmental hazards, their effects were also felt sometimes across the whole of Europe in a way that has not been observed in modern times.

That article sparked a lot of interest and ideas for more projects. Peter Brown, then a Durham MA student, now one of the editors of this volume, began to talk to me about a possible PhD (now successfully completed) specifically to look in detail at severe weather and flooding in north-west Europe in the later medieval period. His research was supported by the Arts and Humanities Research Council through the Northern Bridge Doctoral Training Partnership (Award Number 1617774). By chance I then met Paolo Forlin, the third editor of this volume, at a conference for postgraduate and doctoral researchers in Flaran in southern France and we began to discuss a possible Marie Curie Intra-European Fellowship to bring him to Durham to study medieval earthquakes. When that application was successful, Dave again brought his expertise to the project and helped to co-supervise (ARMEDEA project: Archaeology of
medieval earthquakes in Europe; reference no. 626659). We are now working together once again on a three-year project funded by the Leverhulme Trust (RPG-2017-103) which brings together a wealth of European data drawn from scientific, historical, linguistic and geographic resources to assess medieval and post-medieval responses to earthquakes. While there are some excellent case studies of seismic events and how societies reacted in the past, these have not always been analysed with an archaeological eye, as we shall see.

In 2015 we approached the Society for Medieval Archaeology to ask whether they might consider making ‘natural disasters’ the theme for their annual conference. Fortunately for us, the Council of the Society were enthusiastic. We felt that this would be a good opportunity to bring together a relatively small community of European researchers for two days to discuss the impacts of a range of so-called ‘rapid-onset disasters’ such as severe weather, storm surges and flooding, drought, seismicity and its secondary effects such as tsunamis and volcanic eruptions in the Middle Ages. That conference, entitled ‘Waiting for the End of the World: Perceptions of Disaster and Risk in Medieval Europe’, took place on 2–4 December 2016 at Rewley House in Oxford, UK, and was attended by about 70 delegates. Although the content was productive and motivating, we were not altogether successful in encouraging the mix of geographers, seismologists, climatologists, archaeologists and historians we had hoped would participate, so afterwards we agreed to test the water for an edited volume, but not simply a printed set of conference papers, one that aimed for wider coverage and provided a resource for further research. To that aim we sought to supplement the original line-up of speakers to fill gaps and broaden our coverage and the three editors then compiled the catalogue of medieval disasters which has been included here.

It was a great pleasure to work with David Griffiths and Alison MacDonald and their colleagues on the organization of the Oxford conference and the editors would especially like to thank the Society for Medieval Archaeology, the anonymous referee for their time and Taylor and Francis for their efficiency, especially Matt Gibbons. Alejandra Gutiérrez provided figures for Chapter 6 and translated Chapter 8. Above all, we would like to thank all our contributors for working with us on this volume.

Christopher M. Gerrard, Paolo Forlin and Peter J. Brown
January 2019
RESEARCHING NATURAL DISASTERS IN THE LATER MIDDLE AGES

Peter J. Brown, Paolo Forlin and Christopher M. Gerrard

In a world of global social media, we are all too familiar with modern images of destruction caused by natural disasters and vulnerable human populations struggling to cope with the aftermath (eg Figures 1.1 and 1.2). The Haiti earthquake in 2010, the Tohoku earthquake and tsunami in 2011, the Yunnan earthquake in 2014, the 2014-16 Ebola outbreak, the Kathmandu earthquake of 2015, the 2017 Sierra Leone mudslide, the Sulawesi earthquake and tsunami in 2018; few will have escaped news of these events over the past decade wherever they might live. The raw energy unleashed by natural hazards can sweep away settlements, destroy housing and infrastructure, cause large numbers of fatalities, transform entire landscapes and lay waste to agricultural produce and livestock. National governments and international aid organisations respond to rescue survivors, establish temporary housing for those displaced and bring in emergency aid, equipment and expertise. As a consequence, terms such as ‘risk management’, ‘vulnerability’ and ‘resilience’ have well and truly entered the public lexicon, and awareness of environmental hazards has perhaps never been higher.

We think of these as wholly modern responses, but they are not. No human being, no society, has ever inhabited a totally risk-free environment. Nor are our modern reactions to disasters as coldly informed by technological or scientific practicalities as we might like to believe; religious beliefs continue to shape perceptions of the natural world in many societies around the globe—just as they did in the past (eg Hanska 2002). The extraordinary accusation in 2014 by an English local government councillor that the storms and floods of the preceding winter were ‘divine retribution for the government’s decision to legalise gay marriage’ (The Guardian 18 January 2014) may not reflect the views of the rest of the nation, but it reveals just how shallowly some notions can lie buried. Natural hazards link us to history and archaeology in unexpected ways; the ‘memory’ of the risks they carry may condition the responses of the community for decades or longer. For researchers, an understanding of the frequency and magnitude of past earthquakes will be crucial to any assessment of average return periods and occurrence probabilities, particularly for seismic events (Wisner et al 2011). However we look at it, the study of natural disasters links us intimately with our history.

This book is specifically about natural disasters in the later Middle Ages in Europe. It provides an overview of the many environmental hazards which threatened people in the
Figure 1.1 The devastating impact of the 2004 Indian Ocean tsunami at Meulaboh (Indonesia) (US Navy, public domain)

Figure 1.2 Cows killed by rinderpest in South Africa, 1869 (Wikimedia, public domain)
past, such as earthquakes, severe weather, floods and disease, and shows how medieval societies responded to these threats. This topic was selected as the theme of the Society for Medieval Archaeology’s annual conference in December 2016, held in Oxford, UK. While the focus of the volume is archaeological, the topic will be approached holistically; the study of disasters is (and should always be) an interdisciplinary endeavour. A number of contributions, therefore, seamlessly meld documentary and material evidence (see Standley, Chapter 13) while others approach the topic from either an historical perspective (see Curtis, Chapter 15) or through the lens of another discipline such as philosophy (see Ware and Whittington, Chapter 8). To highlight the range and impact of individual events, the editors have compiled a catalogue of 20 significant natural disasters which affected medieval Europe. Although this part of the world has been one of the less dangerous places to inhabit, it was this period which arguably hosted the greatest volcanic event of the past 2,000 years in 1257–58, some of the most destructive earthquakes and tsunamis, the most serious famine in recorded history between 1315 and 1321 and the worst crisis in public health during the Black Death of 1346–53.

Thanks to a generation of research by earth scientists, geographers, historians, sociologists, anthropologists and climatologists, a growing number of specialists are becoming committed to mobilising evidence from archaeological excavation, standing buildings, place-names, and socio-economic history in order to recuperate the voices of those who experienced these catastrophic events. These scholars are motivated in different ways. For some, this is a topic which has resonance and relevance for today’s world because there may be direct applications to modern disaster-management strategies which could help to anticipate future disasters and perhaps even to prevent them. This is particularly so in the case of tectonic hazards where large sets of ‘big data’ are available at a continental scale through catalogues such as AHEAD (Archive of Earthquake Data) and SHEEC (European Earthquake Catalogue 1000–1899). For other contributors, reconstructing what transpired when historical populations were hit by natural disasters is not only a fascinating exercise—opening a window on a community at one of its most vulnerable moments, sometimes a window of only a few minutes—it also holds the potential to understand how people coped and recovered, or why they did not. The study of natural disasters is ultimately about people. As one author has put it, ‘we cannot be just students of disaster. We must first be students of society and culture’ (Oliver-Smith 1986, 25).

BACKGROUND

Highly destructive events have long been the catalyst for research into the occurrence and impact of specific types of hazard—the 1703 storm in the British Isles (Defoe 1704) and the 1755 Lisbon earthquake (Araújo 2006) being early and well known examples. The study of disasters is certainly not new. At first, interest was generally limited to a specific type of hazard, often in the form of catalogues, rather than natural disasters as a discrete category. Research into the social impacts of natural disasters then accelerated during the post-war years, stimulated by American social scientists who saw these events as proxies through which they might model the social responses provoked by military emergencies, such as a foreign nuclear strike (Quarantelli 1987). Seen in this context, the causes of disaster were sought externally and human communities portrayed as victims forced to react to threats.
Since the 1980s, natural disasters have been recast as events which are best understood as the result of, on the one hand, naturally occurring processes (such as precipitation, seismic activity or cyclonic conditions) and, on the other, cultural decisions (such as the location of human settlement, clustering of high population densities and/or economic interests in areas vulnerable to hazards, etc). These interactions between human society and the natural environment can be conceptualised through a word equation (Figure 1.3) which posits that, in any given situation, risk (meaning the probability of a hazard occurring) is the product of the natural hazard (or threat to humans and their welfare) and the vulnerability of the local population (something which may be affected by a multitude of considerations, including proximity to the source of the hazard, the cultural understanding of the danger posed by the hazard, and the levels of inequality and access to resources within the society). This rephrasing of the conceptual framework applied to natural disasters has been accompanied by a steady growth in interest, both popular and scholarly, in the subject. Research priorities have been galvanised by initiatives such as the United Nations Decade for Disaster Risk Reduction (between 1990 and 1999) as well as the growing realisation that an interdisciplinary approach to disasters is fundamental to addressing the risk that natural hazards will pose in the future as a result of accelerating development and population expansion (Ismail-Zadeh et al 2017). Two points might be underlined

![Figure 1.3](image.png)

Figure 1.3 A word equation which conceptualises the risk of any given natural disaster as a product of both the hazard (or hazards) and the vulnerability of the local population (© Peter J. Brown)
NATURAL DISASTERS IN THE LATER MIDDLE AGES

here. Firstly, as a number of scholars have repeatedly pointed out (Oliver-Smith 1999; Juneja and Mauelshagen 2007; Krüger et al. 2015), natural events are no longer seen as the sole causes of but rather as precipitants or triggers for crisis and, as a result, it may be questioned whether disasters are really ‘natural’ at all, given that disasters emerge as an expression of social vulnerabilities. Secondly, greater stress (although arguably still not enough) is now placed on analysis of the political, social and economic context of a disaster, what is sometimes referred to as ‘cultural framing’ or (less comfortably) ‘cultural profile’, before interpreting the reactions of the community and the role of local agency in the unfolding of events (Janku et al. 2012). In simplistic terms, it is this shift in conceptual approach which opens the door for archaeologists and social historians to make a more significant contribution (eg Bankoff 2003).

Social scientists have proposed a number of theoretical models which offer useful frameworks through which to approach the impact of disasters on human populations. In this book, we make use of three of these. The first is the ‘disaster cycle’ (Figure 1.4),

Figure 1.4 Theoretical frameworks of disaster combining the disaster cycle (central and inner rings), which breaks down the responses of human populations to disasters into a number of successive stages, and the concept of adaptive cycles (outer ring), which models how complex systems respond and reorganize themselves in the aftermath of disturbances. Created by Peter J. Brown drawing together concepts from Alexander (2002, 6) and Holling and Gunderson (2002, 34)
which can be applied to any natural disaster and encapsulates the responses of an affected human population through different stages as a continuously repeating cycle, operating at multiple levels (Alexander 2002, 6). Another is the concept of adaptive cycles (Figure 1.4; Holling and Gunderson 2002, 34), which provides a framework to model how complex systems, such as human societies, reorganise themselves in the aftermath of, often recurring, disturbances—such as natural hazards. This is achieved by breaking down the impact of a disturbance into four key stages: Ω phase—release (the occurrence of a disturbance), α phase—reorganisation (the system reacts to the new situation), r phase—exploitation (advantage is taken of new possibilities created by the disturbance) and k phase—conservation (the establishment of a new equilibrium). The flexibility of this model, which can be applied to many different settings and scenarios, is both a strength and a weakness. Finally, therefore, we refer to the ‘risk management flowchart’ (Figure 1.5) developed by Smith and Petley (2009, 65), which, while largely compatible with the concept of adaptive cycles, is more closely tailored to the reality of situations generated as a result of the interplay of natural hazards and human societies. Importantly, this model shows how societies can improve their coping strategies over time as a result of repeated exposure to disasters, something we consider to be important with respect to our medieval case studies.

![Diagram](Image)

Figure 1.5 The ‘Risk management flowchart’ (redrawn by Paolo Forlin after Smith and Petley 2009, 65)
NATURAL DISASTERS IN THE LATER MIDDLE AGES

This flowchart has two main steps—post-disaster recovery and pre-disaster protection—with four phases in each. The post-disaster recovery steps comprise relief (e.g., the rescue of survivors and items of value), rehabilitation (e.g., temporary shelter, clearing of debris), reconstruction (commonly including the restoration of defences in the Middle Ages) and learning review (writing accounts, public memorials), while pre-disaster protection includes risk assessment, mitigation (such as the implementation of new urban layouts and anti-seismic architectural adaptations thought to enhance resilience), preparedness and the formulation of emergency plans. While this detailed deconstruction may seem overcomplicated at first, the flowchart does provide a useful set of terminologies and an operational sequence for activities which take place either side of a natural disaster (Forlin and Gerrard 2017). Needless to say, few well understood medieval case studies follow this model slavishly, but this is hardly surprising. The model was first developed for application to modern hazards and risks, and the diverse nature of medieval societies across Europe are unlikely to conform precisely to the way in which we understand these events in the present. If nothing else, however, the flowchart serves to highlight gaps in our understanding.

MEDIEVAL DISASTERS AND ARCHAEOLOGY

Given that this is a topic with global ‘reach’, with implications for cultural adaptation, risk, resilience, managing change and much else besides, why has the study of natural disasters not been more of a mainstream topic for medieval archaeologists until now? Prehistorians have long been involved in debates surrounding particular events such as the Thera eruption (Knappett et al. 2011), evaluating risk associated with food supply (e.g., Halstead and O’Shea 1989) and assessing the possible archaeological signatures of risk. Among these, for example, are the burials of children’s skulls found around the bounds of Bronze Age settlements in the Circum-Alpine region (located in modern-day southern Germany, Austria and Switzerland), which have been interpreted as ritualised deposits to protect against flooding from rising lake-water levels (Menotti et al. 2014). Archaeologists are well placed to assess human responses to natural disasters like this as well as to resolve the dating, scale and frequency of events, at least on a long time-line. Roman and early medieval floods, droughts, famines and plagues have attracted interest too, particularly ‘landmark’ events such as the eruption of Vesuvius in AD 79 and its impacts at Herculaneum and Pompeii (e.g., Grattan and Torrence 2008).

For the Middle Ages, however, much of the existing scholarship, at least from a social science perspective, has tended to focus primarily on documentary evidence (see Guidoboni and Ebel 2009 for an important introduction). The main reason for this is the chronological resolution provided by documentary evidence which can be capable of precision to days, even hours, immediately before, during and after the occurrence of a rapid-onset hazard. In the absence of well dated artefacts, such as coins, it is rare that individual archaeological contexts can be resolved to a higher chronological resolution than around 50 years. The refinement of scientific dating methods, such as dendrochronology and thermoluminescence dating, has and will continue to improve matters in this regard, but currently—even in ideal conditions where large timbers with sufficient growth rings survive—chronological resolution often remains too coarse to firmly relate material remains to events documented in written sources. Mike Baillie, in
a discussion of issues around dating accuracy, identified the dangers of what he called ‘suck-in’ and ‘smear’, the former referring to imprecisely dated events with wide error margins which are then incorrectly associated with precisely dated events (Baillie 1991).

There might be another reason too for the lack of archaeological contribution to the study of natural disasters. The uncritical linkage of purported environmental change with developments in the archaeological record has been met with firm rebuttals in the past. One well known controversy is an interpretation advanced in the 1970s which linked the onset of wetter weather conditions with the appearance of drainage ditches on medieval archaeological sites and the decline and eventual abandonment of some villages in medieval England (Beresford 1975, 51–52; Beresford and Hurst 1971, 21; Wright 1976). The deep stigma attached to environmental determinism within the historical and archaeological disciplines has, to some degree, discouraged research into the impact of environmental hazards, and it is only relatively recently that this reticence has begun to be addressed (eg Campbell 2010, 282–284; Hoffman 2014, 342–351). Most historians, from whom medieval archaeologists have to some extent developed their research agendas in the past, do not regard natural disasters as ‘historical prime movers to be analysed and understood in their own right’ (Campbell 2010, 283). Rather they are seen as manifestations of a ‘calamity-sensitive condition’ caused by socio-economic conditions such as population growth.

Although there are some notable exceptions (see Gerrard and Petley 2013 for examples, especially Fäh et al 2009), material evidence has most frequently been invoked by physical scientists when it informs modern estimations of risk in vulnerable regions. The focus here is strongly on the identification and reconstruction of events rather than the social context in which the hazards have occurred or their significance for historic communities (McGlade 1995). Perception, experience and the symbolic are rarely considered because researchers are tightly focused on reconstructing the physical parameters of the event. Although this work is important and extremely useful, it is intended for an entirely different disciplinary readership. Archaeoseismology or ‘earthquake archaeology’ (Figure 1.6), for example, aims to reconstruct the intensity, chronology, magnitude and other physical attributes of past seismic events and measure their impact on archaeological sites (eg Galadini et al 2006; Rodríguez-Pascua et al 2011). We believe that a more ambitious, integrated, form of interpretation can be provided which is more in keeping with current archaeological thinking and best archaeological practice (see Forlin, Chapter 2).

DISASTERS IN THE MIDDLE AGES

Of the 19 authors who contribute chapters here, 10 spoke at the Oxford conference in December 2016, while the others were commissioned to provide greater geographical breadth. Some of the chapters centre on evidence from the British Isles (see Dyer, Chapter 12), but Europe is our focus. Although seismic events and pandemics know no political boundaries, chapters on the Low Countries (see Curtis, Chapter 15), Lanzarote (Spain) (see de León Hernández, Chapter 7), Italy (see Figliuolo, Chapter 3), Cyprus (see O’Neill, Chapter 4) and Germany and Austria (see Rohr, Chapter 11), all pursue regional narratives in different European contexts. Risk does have an intriguing spatial quality which can vary between regions (Müller-Mahn 2013). Likewise, our essays
range widely in chronology, largely focusing on the later medieval period (1000–1600
here), but also embracing earlier material.

The three sections of this volume each cover a different set of environmental hazards. The categories are those set out in the classic textbook Environmental hazards: Assessing risk and reducing disaster by Keith Smith and David Petley (first published in 1991). All are what might be described as ‘extreme, rapid-onset events that directly threaten human life and property … on a scale sufficient to cause a “disaster”’ (Smith and Petley 2009, 9), but we should recognise that hazards are often interrelated in some way; for example, when a landslide blocks a river course, it may cause flooding. In addition, many hazards will relate to mechanisms operating at a much larger scale such as global environmental change or tectonic forces. Strict categories are probably unhelpful. Man-made, self-inflicted risks such as arson and warfare, however, have been excluded, although we do recognise that there is a degree of human involvement in all environmental hazards which might be brought about by poverty, ill-health and the inappropriate use of resources, among other contributing factors.

Part I, on geotectonic hazards, comprises four chapters about earthquakes (Chapters 2–5). Their impacts can be widespread and involve considerable loss of life. The 1456 earthquake in central Italy, for example, is estimated to have cost 70,000 lives (Guidoboni and Ferrari 2000). This is an extensive area of research; catalogues of major European earthquakes are constantly being refined by earth scientists, not least for those regions with a long history of seismicity such as Italy, Greece and the Balkans. The contribution of historical evidence is paramount here too, and all catalogues have

Figure 1.6 Excavation in 2018 at El Castillejo, Granada (Spain), an Islamic village destroyed by earthquake in the 13th century (© Paolo Forlin)
to contend with multiple reporting and embellishment, as well as pronounced regional and chronological bias (e.g., Piccardi and Masse 2007).

In some well-documented cases, such as the 1504–05 earthquake in Bologna, it has proved possible to ‘map’ the distribution of damage building by building, revealing, in effect, a ‘seismic history’ of the event (Guidoboni and Ferrari 2000), including in that case a detailed seismic assessment of the 12th-century Asinelli tower, a brick-and-masonry structure standing 97.2 m high, which lost its spire and is now inclined by 1.7 degrees (Riva et al. 1998). There are several compelling case studies available of rebuilding or replacement, and the results of two further investigations are described in this volume from Cypriot and Italian contexts (O’Neill, Chapter 4; and Ganz and Arrighetti, Chapter 5).

Much of the damage caused by earthquakes is due to ground shaking and strong vertical and horizontal accelerations which cause displacements in the ground surface and lead to the collapse of buildings. Secondary earthquake hazards include soil liquefaction, in which water-saturated sediments are shaken into a fluid state and lose their strength, causing buildings to tilt and fall. An earthquake centred on Carmona, Seville, in southern Spain in 1504 caused few fatalities but is notable for contemporary testimony of ground cracks, liquefaction, flooding and turbidity in wells as well as landslides and rock falls which are still visible today (Silva et al. 2013). ‘Mass movements’ such as landslides and avalanches are also included under the heading of secondary ‘co-seismic’ hazards. Examples of these are discussed in our Catalogue (Chapter 19), among them the catastrophic 1522 landslide which took place at Vila Franca do Campo on the mid-Atlantic island of São Miguel in the Azores, Portugal. A separate chapter is reserved for medieval seismic sea-waves or tsunamis, which tend to be closely (but not exclusively) associated with seismicity (see Gerrard, Chapter 6). Tsunamis affected all the Mediterranean coastlines during the Middle Ages, and there have been many case studies of tsunami-generated sediments which may now provide a point of departure for further archaeological investigations. By contrast, the medieval landscapes and settlements of the Canary Islands, Spain, which lie beneath later outfalls of tephra and lava flows from active volcanoes, have already been subjected to archaeological fieldwork (see de León Hernández, Chapter 7, for Lanzarote). This complements recent work elsewhere in the world, for example studies of the AD 1600 eruptions of the Huaynaputina volcano in Peru, the largest eruption in South America in historic times, which blanketed large areas in ash and pumice. As on Lanzarote, lost settlements buried beneath several metres of flow deposits remain traceable on the ground today (de Silva et al. 2000).

Some of the most compelling chapters in this volume evaluate the reactions of populations to earthquakes (see Figliuolo, Chapter 3) and provide insights into how communities coped emotionally and technically with risk (Figure 1.5). Medieval people, it seems, had a surprisingly broad conception of risk, embracing not only uncertainty and fear of harm but also containment and control. Few attempts have been made to elaborate on our understanding of fear, risk and emotion in the face of catastrophe from a philosophical perspective, explaining how short-sighted and irrational strategies might be accounted for (see Ware and Whittington, Chapter 8). We should not, however, ignore the psychological trauma associated with disasters; both ‘self-preserving behaviour’ and ‘dissociative behaviour’ have been identified among survivors of plague, for example. When the able-bodied remove themselves from the scene, families can disintegrate and there is less tolerance of dependency (Ariely 2009).
This is not always the case, however. Factors such as cultural insularity and mutual support networks can contribute towards an enhanced sense of group identity which may have encouraged different notions of hazard and risk (Walsh 2005).

‘Rapid-onset’ weather conditions such as floods, storms at sea and lightning are among the better recorded natural disasters of the period. They are the subject of Part II of this volume (Chapters 9–13). Many case studies are available, from regional accounts of sea-storms to floods along major rivers to gales (eg Brázdil et al 1999). Generally speaking, local but disastrous impacts are often caused by torrential downpours (a feature typical of Mediterranean weather), whereas larger areas may be affected by melting snow or continuous rainfall. Where the scale and geographical coverage of these events was significant, impacts could be dramatic (see Brown, Chapter 10). All of Europe’s largest buildings, particularly its great churches and cathedrals, were vulnerable to lightning, and many of those which survive in the present bear tell-tale signs of the damage and reconstruction caused by these conflagrations (Figure 1.7).

Figure 1.7 Fire in Delft, the Netherlands, in 1536. In the foreground St Lazarus’s House with praying monks and plague victims (Wellcome Images, CC BY 4.0)
At Chartres, France, most of the Carolingian cathedral was destroyed by fire in 1020, but there was further damage from fires in 1134 and, most seriously, in 1194; successive wooden steeples had burnt down before 1507 (Miller 1996). Other impacts were more enduring. Medieval Old Winchelsea (UK), a prosperous port with extensive fisheries, royal dockyards and overseas trade, suffered two great storms in 1250 and 1252 which permanently breached the shingle barrier on which the port had been built so that by the late 1280s, preparations had begun to transfer the town to its present hilltop location (Martin and Martin 2004).

Subtle warnings of the perils of nature, particularly hydrological hazards, have been found embedded in field- and place-names (see Jones and Kilby, Chapter 9). Elsewhere, stratigraphical layers associated with particular flood events are sometimes identified by archaeologists (Baker 2008). Alluvial sediments with a typically layered structure and homogenous texture from the centre of Florence (Italy), close to the River Arno and dating to the 12th century, have been linked to documentary evidence for a catastrophic flood on 4 November 1177 (Fedi et al 2007). Similarly, deposits between 1 and 10 cm thick were probably left between 1421 and 1424 by medieval flooding in the western Rhine delta (the Netherlands), south of Dordrecht, when the North Sea broke through a dyke and inundated 300 km² of embanked land (Kleinhans et al 2010). Medieval communities were well aware of such dangers and examining economic and social adaptations to the risks posed by flooding reveals pragmatic approaches to flood management in some parts of Europe (see Rohr, Chapter 11).

What was the impact of a natural disaster on medieval populations? If crops failed, there was pressure on food supply, offset to some extent by storage and exchange through markets when impacts were localised and not prolonged. Prices of livestock and grain could rise. A failure in harvests for two years or more, such as that caused by the longer runs of bad weather and wetness between 1313 and 1321, was far more serious. Not only did it delay harvests, reduce yields and available seed corn and encourage unwelcome disease, such as liver fluke in sheep, it also inflated prices further and caused famine. In Ypres in Flanders, for example, 2,794 people, a tenth of the population, died between May and October 1316 (Kershaw 1973). It is instructive to compare different kinds of disaster and assess changes over the long term as well as in the immediate aftermath (see Dyer, Chapter 12; Forlin et al, Chapter 18). While extreme-weather events such as river floods and droughts did have a localised effect on medieval communities, for the most part response mechanisms such as storage were robust enough to reduce their impacts. But when stress on resources became severe, crossing thresholds, and where several events followed each other and redistribution efforts were insufficient, this might trigger ‘political solutions’, such as the importation of grain from abroad.

The interpretation of disaster in the Middle Ages might be literal and moral, but it could also be allegorical and mystical. Objects were imbued with the power to protect and overcome the fear of disaster (see Standley, Chapter 13). There are many examples. In medieval England, coin-folding is evidenced widely in the archaeological record, representing around 1% of medieval coin finds reported to the Portable Antiquities Scheme in England (Kelleher 2011, 1499). This practice features in contemporary saint’s hagiographies in which the act of folding a coin was accompanied by a prayer through which a supplicant would call upon a saint for intercession in a time of dire
NATURAL DISASTERS IN THE LATER MIDDLE AGES

need, such as the occurrence of a natural disaster (Finucane 1995, 94). In the Christian world of pre-industrial Europe, perceptions of nature were forged largely through readings of the Bible and devotional texts. Passages from the books of Genesis and Revelation were especially formative to any interpretation of environmental hazard and understood through wall paintings, sculpture, stained glass, plays and biblical pageants, among other representations (Spinks and Zika 2016).

Part III (Chapters 14–18) discusses biophysical hazards such as human pandemics and animal disease. The Black Death epidemic in the middle of the 14th century is estimated to have killed 50 million people in Europe with subsequent outbreaks (eg in England in 1361, 1369, 1375). Detailed regional studies indicate the loss of population at between 30% and 50%, events that continue to generate a vast and ongoing literature (eg Benedictow 2004). The immediate impact of so many deaths was the issue of how to dispose of the dead, and for this there is archaeological evidence in the form of plague cemeteries (see Kacki, Chapter 14) as well as new historical evidence for local responses. While disasters were widely interpreted as ‘acts of God’, a divine supernatural punishment for the sins of mankind for which medieval communities periodically sought their scapegoats, usually among lepers, Jews and other minority groups, not all social responses were so extreme; some people preferred to preserve their social customs in defiance of local authority (see Curtis, Chapter 15).

Evidence of the direct impact of the Black Death or later plague outbreaks on settlement, however, has always been rather less visible (Plate 1). Although some villages in England were abandoned forever after 1350, such as Tilgarsley in Oxfordshire, and their sites may be visible today as earthworks, tax collectors listed relatively few abandoned places where no contribution at all could be collected as a result of plague (Baggs et al 1990), and some of these, such as Quob in Hampshire, UK, were deserted for only 3 years (Beaumont James 1999). This is a pattern seen for other disasters. Unless the landscape was dramatically and irretrievably altered, as might be the case after a volcanic eruption or a major landslide, subsistence agriculture could usually resume even when people were made homeless and industries reduced to rubble. A large-scale project in the UK has recently been gathering new archaeological evidence which identifies signs of contraction and abandonment of dwellings and plots in villages and hamlets in much greater detail (see Lewis, Chapter 16). Plague in livestock too could be equally calamitous when epidemics were serious (see Gidney, Chapter 17). Not only were animals lost and the reproductive capacity of beef and dairy herds reduced, but also the plough teams needed to cultivate the fields were decimated, and the loss of sheep had a critical impact on the continued fertility of arable fields.

CONCLUSIONS

Accepting that all environmental hazards are influenced by a range of social, environmental, cultural, political, economic, physical and technological constraints, the archaeology and history of disaster is unquestionably a valid and stimulating line of inquiry for medievalists. The chapters in this volume amply demonstrate that point and underline the importance of breaking down barriers between social science, science and the humanities. Many different aspects of disaster events come under scrutiny here, including the nature of disaster events themselves and their causes, memories of
previous comparable events as well as coping responses, cultural context and social organisation. Contributors draw principally on archaeology, history, architecture and geoarchaeology/geology for their evidence and ask: What form does the archaeological evidence for disaster events take, and how can it best be evaluated? How and why did different communities across Europe develop their perceptions and responses to disaster over time? Do different disasters provoke specific kinds of reaction and adaptation or are there recurrent choices? What were the factors that influenced the perception and assessment of risk? To what extent did peer behaviour, belief and religion play their part? With these questions in mind, we ask how archaeology can make its voice heard and what new narratives can be developed from buildings, sites and their material culture.
REFERENCES

Defoe, D, 1704 The storm: Or, a collection of the most remarkable casualties and disasters, which happen’d in the late dreadful tempest, both by sea and land, on Friday the twenty-sixth of November, seventeen hundred and three, G Sawbridge and J Nutt, London.

Wright, S M, 1976 ‘Barton Blount: Climatic or economic change?’, *Medieval Archaeology* 20, 148–152.

Battistella, A, 1932 Udine nel secolo XVI, Arnoldo Forni Editore, Udine.

Figliuolo, B, 1988 Il terremoto del 1456, Edizioni Studi Storici Meridionali, Altavilla Silexina.

García Porras, A, 2001 La cerámica del poblado fortificado medieval de “El Castillejo” (Los Guájar, Granada), Athos-Pérugas, Granada.

Petre, J S, 2012 Crusader castles of Cyprus: The fortifications of Cyprus under the Lusignans, 1191–1489, Cyprus Research Centre, Nicosia.

Bonito, M, 1980 Terra tremante, Forni, Sala Bolognese.

Figliuolo, B, 1988 Il terremoto del 1456, Edizioni Studi Storici Meridionali, Altavilla Silentina.

Piccolomini, E S, 1544 La descrittione de l’Asia et Europa, Vincenzo Valgrisi, Venezia.

Edbury, P W, 1993 The Lusignan kingdom of Cyprus and its Muslim neighbours, Bank of Cyprus Cultural Foundation, Nicosia.

Lusignan, F E and Grivaud, G, 1580 Description de toute l’isle de Cypre, Chez Guillaume Chaudière, Paris.

Cambruzzi, A, 1874 Storia di Feltre, Premiata tipografia sociale Panfilo Castaldi, Feltre.

Chini, L, 1875 Storia antica e moderna del Mugello, G Carnesecchi e figli, Firenze.

Coden, F, 1997 ‘Elementi renani e schemi bizantini in area veneta nel XII secolo: Il santuario dei Santi Vittore e Corona di Feltre’, Postumia 8(8), 60–74.

Dal Zotto, A, 1951 La traslazione da Alessandria d’Egitto dei SS Vittore e Corona, Padova.

Doglioni, F, 1997 Stratigrafia e restauro: Tra conoscenza e conservazione dell’architettura, Lint Editoriale, Trieste.

Doglioni, F, Moretti, A and Petrini, V (eds), 1994 Le chiese e il terremoto: Dalla vulnerabilità constatata nel terremoto del Friuli al miglioramento antisismico nel restauro, verso una politica di prevenzione, Lint Editoriale, Trieste.

Altinok, Y and Ersoy, Ş, 2000 ‘Tsunamis observed on and near the Turkish coast’, *Natural Hazards* 21(2), 185–205.

Bailey, S D, Wintle, A G, Duller, G A T and Bristow, C S, 2001 ‘Sand deposition during the last millennium at Aberffraw, Anglesey, North Wales, as determined by OSL dating of quartz’, *Quaternary Science Reviews* 20(5), 701–704.

Dominey-Howes, D, 2002 ‘Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management’, *Natural Hazards* 25(3), 195–224.

Frutuoso, G, 1873 *As Saudades da Terra*, Typ Funchalese, Funchal.

Haslett, S K and Bryant, E A, 2007a ‘Evidence for historic coastal high-energy wave impact (tsunami?) in North Wales, United Kingdom’, *Atlantic Geology* 43, 137–147.

Haslett, S K and Bryant, E A, 2007b ‘Reconnaissance of historic (post-AD 1000) high energy deposits along the Atlantic coasts of southwest Britain, Ireland and Brittany, France’, *Marine Geology* 242(1–3), 207–220.

Knapp, B, 2010 ‘Cyprus’s earliest prehistory: Seafarers, foragers and settlers’, *Journal of World Prehistory* 23(2), 79–120.

Mastronuzzi, G and Sansò, P, 2000 ‘Boulders transported by catastrophic waves along the Ionian coast of Apulia (southern Italy)’, *Marine Geology* 170(1–2), 93–103.

Papadopoulos, G A and Chalkis, B J, 1984 ‘Tsunamis observed in Greece and the surrounding area from antiquity up to the present times’, Marine Geology 56(1), 309–317.

Álvarez Rixo, J A, 1982 Historia del puerto de Arrife, Aula Cultura de Tenerife, Santa Cruz de Tenerife.
Aznar, E, 1990 *Pesquisa de Cabitos*, Servicio de Publicaciones del Excmo Cabildo Insular de Gran Canaria, Madrid.

Castillo, P A del, 1948 *Descripción histórica y geográfica de las Islas Canarias, vol 1*, Ediciones El Gabinete Literario de Las Palmas, Madrid.

Dávila y Cárdenas, P M, 1737 *Constitución y nuevas adiciones synodales del Obispado de Canarias*, Diego Miguel de Peralta, Madrid.

De León Hernández, J, 2008 *Lanzarote bajo el volcán: Los pueblos y el patrimonio edificado sepultados por las erupciones del siglo XVIII*, Servicio de Publicaciones Cabildo Insular de Lanzarote, Las Palmas.

Dug Godoy, I, 1972–73 ‘Excavaciones en el poblado prehispánico de Zonzamas (Isla de Lanzarote)’, *El Museo Canario* 33–34, 121

Hernández Pacheco, E, 2002 *Por los campos de lava: Relatos de una expedición científica a Lanzarote y a las Isletas canarias. Descripción e historia geológica (1907–1908)*, Fundación César Manrique, Madrid.

Suárez, J J, Rodriguez, F and Quintero, C L, 1988 Historia popular de Canarias, vol 2: Conquista y colonización, Centro de la Cultura Popular Canaria, Santa Cruz de Tenerife.

Verneau, R, 1981 Cinco años de estancia en las Islas Canarias, J A D L La Orotava, Tenerife.

Viera y Clavijo, J, 1967 Noticias de la historia general de las Islas Canarias, Goya Ediciones, Santa Cruz de Tenerife.

Burke, E, 1998 Philosophical inquiry into the origin of our ideas of the sublime and the beautiful, Oxford University Press, Oxford.

Cannon, W, 1929 Bodily changes in pain, hunger, fear and rage, Appleton, New York.

Carroll, N, 1990 The philosophy of horror or paradoxes of the heart, Routledge, New York.

Duff, A, 2015 ‘Criminal responsibility and the emotions: If fear and anger can exculpate, why not compassion?’, *Inquiry* 58(2), 189–220.

Faucher, L and Tappolet, C, 2002 ‘Fear and the focus of attention’, *Consciousness and Emotion* 3(2), 105–144.

James, W, 1884 ‘What is an emotion?’, Mind 9(34), 188–205.

James, W, 1890 The principles of psychology, Harvard University Press, Cambridge, MA.

Rohr, C, 2005 ‘The Danube floods and their human response and perception (14th to 17th C)’, *History of Meteorology* 2, 71–86.

Rohr, C, 2007 ‘Writing a catastrophe: Describing and constructing disaster perception in narrative sources from the late Middle Ages’, *Historical Social Research* 32(3), 88–102.

Thucydides, 1910 History of the Peloponnesian war, J M Dent & Sons Ltd, London.

Crouch, D and McDonagh, B, 2016 ‘Turf wars: Conflict and cooperation in the management of Wallingfen (East Yorkshire), 1281–1781’, Agricultural History Review 64(2), 133–156.

Farr, M W, 1959 Accounts and surveys of the Wiltshire lands of Adam de Stratton, Wiltshire Archaeological and Natural History Society, Devizes.

Gardiner, M and Hartwell, B, 2006 ‘Landscapes of failure: The archaeology of flooded wetlands at Titchwell and Thornham (Norfolk), and Broomhill (East Sussex)’, Journal of Wetland Archaeology 6, 137–160.

Gelling, M, 1984 Place-names in the landscape, Dent, London.

Kolb, E, 1989 ‘Hamm: A long-suffering place-name word’, Anglia, 107, 49–51.

Maitland, F W and Baildon, W P (eds), 1891 The Court Baron, being precedents for use in seignorial and other local courts together with select pleas from the bishop of Ely's court of Littleport, Selden Society, London.

Parsons, D and Styles, T (eds), 1997 The vocabulary of English place-names (A-Box), English Place-Name Society, Nottingham.
Rippon, S, 2009 “Uncommonly rich and fertile” or “not very salubrious”? The perception and value of wetland landscapes, Landscapes 10(1), 39–60.
Walker, D (ed), 1998 The cartulary of St Augustine’s Abbey, Bristol, The Bristol and Gloucestershire Archaeological Society, Bristol.
Boccaccio, G, 1825 The Decameron, or ten days’ entertainment, Charles Daly, London.
Brill, W G (ed), 1885 Rijmkroniek van Melis Stoke, Eerste Deel, Kemink & Zoon, Utrecht.

Venables, E (ed), 1891 Chronicon Abbatie de Parco Lude. The chronicle of Louth Park Abbey, Lincolnshire Record Society, Horncastle.

Brunner, O (ed), 1953 Die Rechtsquellen der Städte Krems und Stein (Fontes Rerum Austriacarum III, 1), Böhlau, Graz/Cologne.

Rohr, C, 2005 ‘The Danube floods and their human response (14th to 17th c)’, *History of Meteorology* 2, 71–86.

Rohr, C, 2013 ‘Floods of the upper Danube river and its tributaries and their impact on urban economies (c 1350–1600): The examples of the towns of Krems/Stein and Wels (Austria)’, Environment and History 19(2), 133–148.

Schwarzl, S, 1956 Die Hochwasserbedrohung Wiens: Elementarereignisse an der Donau im Rahmen der Klimaentwicklung, Österreichische Gesellschaft für Meteorologie, Vienna.

Wels, Municipal Archive, Bruckamtsrechnungen (Accounts of the bridge master; no shelf mark), 1441–1599.

Amor, N R, 2011 Late medieval Ipswich: Trade and industry, Boydell, Woodbridge.

Keene, D, 2011 ‘Crisis management in London’s food supply, 1250–1500’, in B Dodds and C Liddy (eds), Commercial activity, markets and entrepreneurs in the Middle Ages, Boydell, Woodbridge, 45–62.

Slavin, P, 2012 *Bread and ale for the brethren: The provisioning of Norwich Cathedral Priory, 1260–1536*, University of Hertfordshire Press, Hatfield.

Soens, T, 2011 ‘Floods and money: Funding drainage and flood control in coastal Flanders from the thirteenth to the sixteenth centuries’, *Continuity and Change* 26, 333–365.

Thoen, E and Soens, T, 2015 *Struggling with the environment: Land use and productivity*, Brepols, Turnhout.

Woolhouse, T, 2016 *Medieval dispersed settlement on the mid Suffolk clay at Cedars Park, Stowmarket*, East Anglian Archaeology 161, Archaeological Solutions, Bury St Edmunds.

Draper, G and Meddens, F, 2009 *The sea and the marsh: The medieval Cinque Port of New Romney revealed through archaeological excavations and historical research*, Pre-Construct Archaeology, London.

Jones of Usk, W, 1607 Gods vvarning to his people of England By the great ouer-flowing of the vvaters or floudes lately hapned in South-wales and many other places. Wherein is described the great losses, and wonderfull damages, that hapned thereby, by the drowning of many townes and villages, to the vtter undooing of many thousandes of people, available at http://name.umdl.umich.edu/A00015.0001.001 (accessed May 2019).

through the ages, University of Oxford, School of Archaeology Monograph 56, Oxford, 84–100.

Spencer, B, 2010 Pilgrim souvenirs and secular badges, Medieval finds from excavations in London 7, Boydell Press, Woodbridge.

Riera-More, S and Esteban-Amat, A, 1994 ‘Vegetation history and human activity during the last 6000 years on the central Catalan coast (northeastern Iberian Peninsula)’, Vegetation History and Archaeobotany 3, 7–23.

Anon, 1655 Ordonnantie vande Vroedschap der stad Utrecht op ‘t stuck van de peste ende begravinghe der dooden..., Amelis van Paddenburgh, Utrecht.

Anon, 1664 Provisionele ordre op het weer, ende stuten van de besmettelijke sieckte binnen Delf, Arnold Bon, Delft.

Blažina, T and Blažina, V, 2015 Expelling the plague: The health office and the implementation of quarantine in Dubrovnik 1377–1533, McGill-Queen’s University Press, Montréal.

Calain, P and Poncin, M, 2015 ‘Reaching out to Ebola victims: Coercion, persuasion or an appeal for self-sacrifice?’, Social Science and Medicine 147, 126–133.

Cohn, S K, 2018a *Epidemics: Hate and compassion from the Plague of Athens to AIDS*, Oxford University Press, Oxford.

Gosson, H, 1630 *A looking-glassse for city and countrey, wherein is to be seene many fearfull examples in the time of this grievous visitation, with an admonition to our Londoners flying from the city, and a perswasion [to the] country to be more pitiful to such as come for succor amongst them*, H Gosson, London.

Hout, J van, 1603 Ordonnantie ende ghebot nopenende de heete ziekte, ofte peste..., Raedthuys, Leiden.

Noordegraaf, L and Valk, G, 1989 ‘Rotterdam in de zeventiende eeuw: De navel van de wereld?
Oomius, S, 1664 Des Heeren verderflicke pyl: Ofte Twee boeken van de pest..., Willem van Beaumont, Amsterdam.
Rutten, W, 1997 De vreselijkste aller harpijen: Pokkenepidemieën en pokkenbestrijding in Nederland in de 18e en 19e eeuw, Landbouw Universiteit Wageningen, Wageningen.

Schevensteen, A van, 1927 ‘De hygiënische maatregelen van het magistraat van Antwerpen in de 15e eeuw’, *Geschiedenis der Geneeskunde* 71, 2479–2492.

Smail, D L, 1996 ‘Accommodating plague in medieval Marseille’, *Continuity and Change* 11, 11–41.

Sundberg, A, 2015 ‘Claiming the past: History, memory, and innovation following the Christmas Flood of 1717’, *Environmental History* 20, 238–261.

Zalinge-Sporen, C van, 1994 ‘“Die contagieuse sieckte der peste is grasserende...”: De pest in Helmond in 1636’, *De Vlasbloem* 14, 57–92.

Beresford, M and Hurst, J (eds), 1989 *Deserted medieval villages*, Alan Sutton, Stroud (2nd edn).
Campbell, B, 2005 ‘The agrarian problem in the early fourteenth century’, *Past & Present* 188, 3–70.
Coles, J, 1972 *Field archaeology in Britain*, Methuen, London.
Dyer, C and Jones, R (eds), 2010 Deserted villages revisited, University of Hertfordshire Press, Hatfield.
Ellison, A, 1983 Medieval villages in south-east Somerset, Western Archaeological Trust Survey 6, Western Archaeological Trust, Bristol.
Haselgrove, C, Millett, M and Smith, I (eds), 1985 Archaeology from the ploughsoil: Studies in the collection and interpretation of field survey data, University of Sheffield Department of Archaeology, Sheffield.
Hooke, D (ed), 1985 Medieval villages, Oxford University Committee for Archaeology Monograph 5, Oxford University Committee for Archaeology, Oxford.
Hurst, J, 1989 ‘A review of archaeological research’, in M Beresford and J Hurst (eds), Deserted medieval villages, Alan Sutton, Stroud, 76–144 (end edn).
Jones, G, 2007 Saints in the landscape, Tempus, Stroud.

Martin, E and Satchell M, 2008 Wheare most inclosures be, East Anglian fields: History, morphology and management, East Anglian Archaeology Report 124, East Anglian Archaeology, Ipswich.

McCarthy, M R and Brooks, C M, 1988 Medieval pottery in Britain, Leicester University Press, Leicester.

Moorhouse, S, 2003 ‘Anatomy of the Yorkshire Dales: Decoding the medieval landscape’ in T G Manby, S Moorhouse and P Ottaway (eds), The archaeology of Yorkshire: An assessment

Mynard, D, 1994 Excavation on medieval sites in Milton Keynes, Buckinghamshire Archaeological Society Monograph 6, Buckinghamshire Archaeological Society, Aylesbury.

Albarella, U and Davies, S, 1996 ‘Mammals and birds from Launceston Castle, Cornwall: Decline in status and the rise of agriculture’, *Circeea* 12(1), 1–156.

Rippon, S, 2004 ‘Making the most of a bad situation? Glastonbury Abbey and the medieval exploitation of wetland resources in the Somerset levels’, Medieval Archaeology 48, 91–130.

Redman, C, 2012 ‘Global environmental change, resilience, and sustainable outcomes’, in J Cooper and P D Sheets (eds), Surviving sudden environmental change: Understanding
hazards, mitigating impacts, avoiding disasters, University Press of Colorado, Boulder, 237–244.

Torrence, R and Grattan, J (eds), 2002 Natural disasters and cultural change, Routledge, New York.

van Bavel, B and Curtis, D, 2015 Better understanding disasters by better using history: Systematically using the historical record as one way to advance research into disasters, Working Papers 0068, Utrecht University, Centre for Global Economic History, Utrecht.

Williams J and Brown, N, 1999 An archaeological research framework for the Greater Thames Estuary, Essex County Council, Chelmsford.

Caius, J, 1552 A boke or counseill against the disease commonly called the sweate, or sweating sickenesse, reprinted in E S Roberts (ed), 1912 The works of John Caius MD, Cambridge University Press, Cambridge.

Cordus, E, 1529 Fur die neue, hiervor unerhörte und erschrocklich todtliche Krankheyt und schnellen todt, die English schweyee-sucht geant, Strasbourg.

Currie, M A (ed), 1908 The letters of Martin Luther, Macmillan and Co Limited, London.

Davis, A H (ed), 1934 Chronicle of St Augustine’s Abbey (by William Thorne), Blackwell, Oxford.

Frutuoso, G, 1981 Saudades da Terra, Instituto Cultural de Ponta Delgada, Ponta Delgada.

Gibbons, A, 2019 ‘Eruption made 536 “the worst year to be alive”’, Nature 362, 733–734.

HCC (Hampshire County Council), n.d *The Black Death in Hampshire through the archives*, Hampshire Record Office unpublished report, Winchester.

Henriques, M C, Mouzinho, M T and Ferrão, N M 1988 *O sismo de 26 de Janeiro de 1531*, Sismicidade de Portugal, Comissão para o Cataálogo Sísmico Nacional, Lisbon.

Holder-Egger, O (ed), 1896 *Monumenta Germaniae Historica Scriptores XXX(I)*, Impressio Bibliopolii Hahniani, Hannover.

Jacobeit, J, Wanner, H, Koslowski, G and Gudd, M, 1999 ‘European surface pressure patterns for months with outstanding climatic anomalies during the sixteenth century’, *Climatic Change* 43, 201–221.

Junius, H, 1588 *Batavia*, ex officina Plantiniana apud Franciscum Raphelengium, Leiden.

Löwenborg, D, 2012 ‘An Iron Age shock doctrine: Did the AD 536–7 event trigger large-scale social changes in the Mälaren valley area?’, *Journal of Archaeology and Ancient History* 4, 1–29.

Martin-Vide, J and Barriendos-Vallvé, M, 1995 ‘The use of rogation ceremony records in climatic reconstruction: A case study from Catalonia (Spain)’, *Climatic Change* 30(2), 201–221.

and after the Roman Empire: Reconstructing the past from scientific and historical evidence’, *Journal of Interdisciplinary History* 43(2), 169–220.

Osório, B, 1919 ‘O terramoto de Lisboa de 1531’, *Separata do Buletim de la classe da Academia das Ciências de Lisboa* 12, 14–21.

Petre, J S, 2012 Crusader castles of Cyprus: The fortifications of Cyprus under the Lusignans, 1191–1489, Cyprus Research Centre, Nicosia.

Rohr, C, 2003 ‘Man and natural disaster in the late Middle Ages: The earthquake in Carinthia and Northern Italy on 25 January 1348 and its perception’, Environmental History 9(9), 127–149.

Woodruff, C E, 1933 ‘The rebuilding of the south-west tower of Canterbury Cathedral in the fifteenth century’, Archaeologia Cantiana 45, 37–47.

Woolhouse, T, 2016 Medieval dispersed settlement on the mid Suffolk clay at Cedars Park, Stowmarket, Archaeological Solutions Ltd, Bury St Edmunds.
