Linear and Non-Linear Deformations of Elastic Solids
Linear and Non-Linear Deformations of Elastic Solids

Arabinda Roy
Rasajit Kumar Bera
Contents

Preface .. xvii
Acknowledgments ... xix
Authors ... xxi

Section I Linear Elasticity

1. **Basic Fundamentals and an Overview** ... 3
 1.1 Introduction .. 3
 1.2 Basic Stress System ... 3
 1.3 Equation of Motion and Various Potentials .. 5
 1.4 Various Transforms Used ... 6
 1.5 General Form of the Elastic Wave Equation .. 6
 1.6 Reciprocity Principle and Representation Theorem 7
 1.7 General Solution of the Equation of Motion for an Arbitrary Force System ... 10
 1.8 Green's Function in an Infinite Medium ... 14
 1.9 Principle of Fracture Mechanics ... 16
 1.9.1 Irwin's Fracture Criterion ... 17
 1.9.2 Other Fracture Criteria ... 17
 References .. 18

2. **One or Two-Dimensional Singular Integral Equation in Contact and Crack and Method of Solution** ... 19
 2.1 Introduction ... 19
 2.2 Crack Boundary Condition .. 20
 2.3 Boundary Condition for Punch or Indentation Problem 21
 2.4 Basic Form of Singular Integral Equation for Crack and Punch Problems ... 22
 2.5 Method of Solution of One-Dimensional Singular Integral Equation 23
 2.6 Basic Integral Equation in Crack and Punch Problem in Planar Surface .. 25
 2.7 Direct Method of Solution for Two-Dimensional Singular Integral Solution in Elliptic Region .. 26
 2.8 Potential Method for Two-Dimensional Singular Integral Solution 27
 2.9 Derivation in Terms of Jacobi’s Polynomial ... 31
 2.10 Applications .. 33
 References .. 35
3. Two-Dimensional Contact and Crack Problems in Isotropic Elastic Media: Complex Variable Technique .. 37
 3.1 Introduction .. 37
 3.2 Complex Representation of the Plane Elasticity Problem 37
 3.3 Complex Potentials in Semi-Infinite Medium 39
 3.4 First Fundamental Problem for the Semi-Infinite Medium 40
 3.5 Green's Function in Infinite and Semi-Infinite Media 41
 3.6 Contact Problem for the Half Plane .. 41
 3.7 Flat Punch ... 42
 3.8 Hertz Indentation .. 43
 3.9 Stress in the Medium for Hertz’ Indentation .. 43
 3.10 Formulation of the Crack Problem .. 44
 3.11 Line Crack at the Interface of Two Elastic Media 46
 3.12 Stress Intensity Factor in the Interface Medium 48
 3.13 Stress Intensity Factor .. 49
 3.14 Crack Tip Singularity: Stress Intensity Factor Determination in Wedge ... 49
 3.15 General Observation .. 50
 References .. 51

4. Two-Dimensional Contact and Crack Problems in Anisotropic Media ... 53
 4.1 Introduction .. 53
 4.2 Green's Function in an Anisotropic Medium ... 53
 4.3 Line Source and Dislocation in an Infinite Medium 55
 4.4 Green's Function in a Half Space .. 56
 4.5 Green's Function of Two-Dimensional Anisotropic Plates Containing an Elliptic Hole ... 58
 4.6 Contact Problem Under a Punch .. 61
 4.7 Hertzian Contact Solution in Bonded Dissimilar Materials in Presence of a Loading ... 62
 4.8 Fully Open Crack Between Dissimilar Anisotropic Composites 66
 4.9 Formulation of the Integral Equation .. 67
 4.10 The Comninou Interface Crack ... 72
 4.11 Method of Solution ... 75
 References .. 76

5. Complete Solution to Three-Dimensional Indentation and Crack Problems in Isotropic Elastic Media .. 79
 5.1 Introduction .. 79
 5.2 Circular Crack and Punch Problem ... 81
 5.3 Point Dislocation in Front of a Crack .. 83
 5.4 Dislocation Outside a Circular Punch .. 85
 5.5 Elastic Field Around a Circular Crack and Punch: Fabrikant’s Method ... 86
 5.6 Crack Under Shear Loading ... 89
 5.6.1 Punch Problem ... 91
5.7 Basic Solutions in Three-Dimensional Contact Problem in Isotropic Elastic Media ... 91
5.8 Formulation of the Integral Equation and Its Solution for the Contact Problem .. 94
5.9 Alternative Method of Solution .. 96
5.10 Complete Solutions of the Elastic Field Inside the Elastic Half Space 100
5.11 Conical Punch Under Constant Loading 104
5.12 Stresses on the Axis of Symmetry .. 105
5.13 Surface Displacement for Elliptic Contact 105
5.14 Circular Contact: A Particular Case .. 107
5.15 Line Contact .. 108
5.16 Tangential Indentation ... 109
5.17 Elliptic Crack in an Isotropic Elastic Medium 110
5.18 Indentation Stress Field for Hertzian Contact 112
5.19 Features of Hertzian Fracture .. 114
References .. 116

6. Three-Dimensional Interface Crack in Isotropic and Anisotropic Elastic Media ... 119
6.1 Introduction ... 119
6.2 Formulation of the Problem .. 120
6.3 Analytical Solution of the Pair of Integral Equations 123
6.4 Energy Release Rate .. 128
6.5 Interface Crack in Anisotropic Medium 131
6.6 Constant Normal Pressure ... 137
6.7 General Observation ... 137
References .. 138

7. Three-Dimensional Elliptic Indentation and Crack Problem in Piezoelectric Media ... 139
7.1 Introduction ... 139
7.2 Basic Solution in Piezoelectric Medium 139
7.3 Formulation of Contact and Crack Problems Under Normal Loading 146
7.4 Integral Equations for Contact and Crack Problem 148
7.5 Formulation of the Integral Equations 149
7.6 Method of Solution for Contact Problem 150
7.7 Total Mechanical Load and Electric Charge 151
7.8 Limiting Case of Transversely Isotropic Media 152
7.9 Elliptic Crack in Piezoelectric Medium Under Shear Loading 154
7.10 Complete Solution in the Medium ... 157
7.11 Complete Field ... 158
7.12 Crack Tip Field ... 159
7.13 Crack in Piezoelectric Medium ... 165
7.14 Stress Intensity Factor for Constant Shear Loading 167
7.15 General Observation and Discussion 167
References .. 169
8. Crack-Microcrack Interaction and Crack and Punch in Plate and Layered Media ... 171
 8.1 Introduction.. 171
 8.2 Two-Dimensional Crack-Microcrack Interaction 171
 8.3 Kachanov’s Method for Two-Dimensional Crack Interaction Problem 174
 8.4 Three-Dimensional Crack Interaction .. 177
 8.5 Interaction Between Circular Cracks: Kachanov’s Method 177
 8.6 Interaction Between Circular Cracks Under Shear Loading – Kachanov’s Method ... 179
 8.7 Summary of Numerical Results: Interaction Between Circular Cracks .. 180
 8.8 Interaction Between Elliptic Crack ... 184
 8.9 Interaction Between Equal Coplanar Elliptic Crack Subjected to Normal Loading ... 187
 8.10 Interaction Between Circular and Elliptic Cracks 189
 8.10.1 Effect of a Microcrack on a Macrocrack 189
 8.10.2 Effect of a Macrocrack on a Microcrack 189
References .. 192

9. Weight Function Theory .. 195
 9.1 Introduction.. 195
 9.2 Basic Theory... 195
 9.3 Application... 196
 9.4 Axisymmetric Weight Function for a Circular Crack 197
 9.5 Crack Face Weight Functions for Circular Crack 198
 9.6 Crack Face Weight Functions for Half Plane Crack 199
 9.7 Weight Function Theory for an Elliptic Crack in an Infinite Medium .. 200
 9.8 Determination of the Potentials Φ_c, Φ_s 202
 9.9 Approximate Method for the Determination of the Weight Function .. 207
 9.10 The Petroski Achenbach Method .. 207
 9.11 Discussion and Some Applications of the Weight Function Theory... 209
References .. 211

10. Surface Displacement in an Elastic Half Space Due to an Earthquake Source on an Inclined Fault Plane .. 213
 10.1 Introduction.. 213
 10.2 Statement of the Problem.. 213
 10.3 Reduction by Cagniard’s Technique .. 215
 10.4 Reduction in Case of S Wave .. 217
 10.5 Complete Form of Surface Displacement 219
 10.6 Discussion... 221
References .. 225
11. Earth Response to Uniform Self Similar Crack Motion 227
 11.1 Introduction .. 227
 11.2 Formulation .. 228
 11.3 Formulation of the Problem ... 230
 11.4 Method of Homogeneous Solution .. 232
 11.5 Body Force Equivalents and Surface Displacement 234
 11.6 Discussion .. 237
 References .. 238

12. Growth of a Semi-infinite Crack at a Varying Velocity 239
 12.1 Introduction .. 239
 12.2 Growth of a Half Plane Infinite Crack at a Varying Velocity 239
 12.3 Wiener-Hopf Method .. 241
 12.4 Reduction of the Integral Equation .. 242
 12.5 Discussion .. 247
 References .. 247

13. Dynamic Response of Elliptical Footings .. 249
 13.1 Introduction .. 249
 13.2 Basic Solutions for Forced Vibration of Elliptic Disc 249
 References .. 254

14. Two-Dimensional Low Frequency Scattering of Acoustic Wave
 by a Rough Surface .. 255
 14.1 Introduction .. 255
 14.2 Statement of the Scattering Problem .. 255
 14.3 Scattering Cross Section ... 259
 14.4 Examples ... 259
 References .. 260

15. Scattering and Impact Response of Half Plane Crack in Transversely
 Isotropic and Isotropic Media ... 261
 15.1 Introduction .. 261
 15.2 Formulation of the Problem ... 261
 15.2.1 Normal Load .. 263
 15.2.2 Shear Load ... 265
 15.3 Limiting Case: Isotropic Medium ... 267
 15.4 Diffraction by a Line Crack in a Transversely Isotropic Medium ... 269
 15.5 Line Crack in an Isotropic Medium ... 271
 15.6 Stopping of a Line Crack ... 271
 References .. 273

16. Scattering from an Elliptic Crack .. 275
 16.1 Introduction .. 275
 16.2 Formulation of the Problem ... 275
 16.3 Low Frequency Case .. 277
Contents

19.8 Formulation of Boundary Integral Method .. 336
19.9 Discretization and Regularization Technique for Boundary Integral Method.. 337
19.10 Alternate Method .. 339
19.11 Zhang and Achenbach’s Method for the Two-Dimensional Boundary Integral Method................................. 340
19.12 Alternate Boundary Integral Method for Anisotropic Piezoelectric Media.. 341
19.13 Two-Dimensional Boundary Integral Method for Anisotropic Media.. 343
19.14 Details of Numerical Scheme .. 345

19.14.1 Shape Function ... 345
19.14.2 Numerical Formulation and Evaluation of Singular Integral .. 345
19.15 Stress Intensity Factor Evaluation .. 346
19.16 Element Free Boundary Integral Method .. 346
19.17 Discussion .. 348
References .. 348

Section II Nonlinear Elasticity

20. Large Amplitude Free Vibration of Rotating Nonhomogeneous Beams with Nonlinear Spring and Mass System .. 353
20.1 Introduction ... 353
20.2 Formulation of the Problem .. 354
20.3 Solution Methodology .. 360
20.4 Linear Solution .. 362
20.5 Nonlinear Solution .. 364
20.6 Results and Discussions .. 366

20.6.1 Linear Analysis .. 366
20.6.2 Nonlinear Analysis .. 369
20.7 Conclusion .. 373
Appendix .. 373
References .. 375

21. Stability of an Anisotropic Right-Angled Isosceles Triangular Plate Under Large Deflection .. 377
21.1 Introduction ... 377
21.2 Constitutive Equations .. 378
21.3 Governing Equations for an Anisotropic Right-Angled Triangular Plate .. 378
21.3.1 Boundary Conditions .. 379
21.4 Stability Analysis of an Anisotropic Right-Angled Isosceles Triangular Plate Under Large Deflection 380
References .. 381
Contents

22. Large Amplitude Free Vibrations of Irregular Plates Using Complex Variable Technique

- 22.1 Introduction .. 383
- 22.2 Governing Equation .. 383
- 22.3 Applications of Complex Variable Technique ... 388
 - 22.3.1 Clamped Corner Plate .. 388
 - 22.3.2 Circular Plate ... 389
- 22.4 Experimental Verification ... 390
- 22.5 Discussion on Numerical and Experimental Results ... 391
- 22.6 Conclusion ... 392
- References .. 393

23. Large Amplitude Vibrations of Thin Elastic Plates Using Conformal Transformation

- 23.1 Introduction .. 395
- 23.2 Governing Equations .. 396
- 23.3 Applications of the Method ... 399
 - 23.3.1 Nonlinear Static Case .. 399
 - 23.3.2 Free Nonlinear Vibrations ... 400
- 23.4 Results and Conclusions ... 402
- References .. 402

24. Large Deflection of a Circular Plate on an Elastic Foundation

- 24.1 Introduction .. 405
- 24.2 Governing Equations .. 405
- 24.3 Solution for a Circular Plate Under Transverse Load .. 406
 - 24.3.1 Solution for a Circular Plate Under a Different Transverse Load 409
- 24.4 Numerical Results and Discussions ... 411
- References .. 414

25. A Modified Approach to the Nonlinear Analysis of Thin Elastic Plates

- 25.1 Introduction ... 415
- 25.2 Governing Equations for Static Loading ... 416
 - 25.2.1 Circular Plate ... 416
 - 25.2.2 Rectangular Plate .. 419
- 25.3 Governing Equations for Dynamic Loading ... 419
 - 25.3.1 Circular Plates ... 419
 - 25.3.2 Rectangular Plate ... 420
- 25.4 Governing Equations for Thermal Loading .. 420
 - 25.4.1 Circular Plate ... 420
 - 25.4.2 Rectangular Plate .. 421
- 25.5 Large Deflection of Elastic Plates Under Uniform Load 422
 - 25.5.1 Circular Plate ... 422
 - 25.5.2 Square Plate ... 423
 - 25.5.3 Results and Discussions .. 423
25.6 Large Deflection of Circular Elastic Plates Under a Concentrated Load at the Centre……………………………………………………………………………425
References …………………………………………………………………………426

26. Large Amplitude Free Vibration of Parabolic Plates ………………….427
26.1 Introduction……………………………………………………………………427
26.2 Governing Equations……………………………………………………………427
26.3 Transverse Vibration of Parabolic Plates……………………………………429
26.4 Solution of the Problem ……………………………………………………..431
26.5 Numerical Results……………………………………………………………..433
26.6 Observations and Conclusions………………………………………………434
References …………………………………………………………………………434

27. Large Amplitude Free Vibration of Sandwich Parabolic Plates …..435
27.1 Introduction……………………………………………………………………435
27.2 Governing Equations……………………………………………………………436
27.3 Equation for Sandwich Parabolic Plate……………………………………….439
27.4 Solution of the Problem……………………………………………………….441
27.5 Numerical Results and Discussions………………………………………..443
References …………………………………………………………………………445

28. Large Amplitude Vibration of Orthotropic Sandwich Elliptic Plates….447
28.1 Introduction……………………………………………………………………447
28.2 Governing Equations……………………………………………………………447
28.3 Stress-Strain Relations for Each Face Sheet of the Sandwich Plate…..449
28.4 Strain and Displacement Relations of the Sandwich Elliptic Plate….449
28.5 Derivation of Strain Energy of the Sandwich Plate……………………….450
28.6 Vibration of an Orthotropic Sandwich Elliptic Plate……………………455
28.7 Solution of the Problem………………………………………………………..458
28.8 Numerical Results and Discussions………………………………………..460
28.9 Conclusion……………………………………………………………………462
References …………………………………………………………………………462

29. Large Amplitude Vibration of Heated Orthotropic Sandwich Elliptic Plates …………………………………………………………………………………465
29.1 Introduction……………………………………………………………………465
29.2 Governing Equations……………………………………………………………465
29.3 Stress-Strain-Temperature Relations for Each Face Sheet of the Heated Sandwich Plate………………………………………………………………466
29.4 Strain and Displacement Relations of the Sandwich Plate……………….467
29.5 Strain Energy of a Heated Sandwich Plate……………………………….468
29.5.1 Strain Energy of the Sandwich Plate of Orthotropic Core …………..468
29.5.2 Total Strain Energy of the Heated Sandwich Plate with Orthotropic Core……………………………………………………………………469
29.6 Governing Equation for the Heated Sandwich Elliptic Plate 472
29.7 Solution of the Problem .. 474
29.8 Numerical Results and Discussions ... 477
29.9 Conclusion .. 479
References .. 479

30. Stability Analysis of Thermal Bending and Buckling of Plates
Due to Large Deflection .. 481
30.1 Introduction .. 481
30.2 Governing Equations .. 482
30.3 Solution for Simply Supported Rectangular Plate 484
30.4 Solution for Clamped Circular Plate ... 486
30.5 Solution for Clamped Elliptic Plate .. 488
References .. 490

31. Stability of Thin Plates Due to Edge Thrust Under Large Deflections,
Buckling Being Resisted by a Force Proportional to the Displacement 491
31.1 Introduction .. 491
31.2 Constitutive Equations .. 491
31.3 Rectangular Plate Under Edge Thrust .. 493
31.4 Circular Plate Under Edge Thrust .. 495
 31.4.1 Symmetrical Case ($n = 0$) ... 497
31.5 Conclusion .. 498
References .. 498

32. Large Deflection of Clamped Cylindrical Shell 499
32.1 Introduction .. 499
32.2 Nonlinear Analysis of Clamped Cylindrical Shells Under
 Static Load .. 499
 32.2.1 Governing Equations .. 499
 32.2.2 Solution of the Problem .. 501
 32.2.3 Numerical Computation ... 502
32.3 Large Amplitude Free Vibration of Clamped Cylindrical Shells 503
 32.3.1 Governing Equations .. 503
 32.3.2 Solution of the Problem for u and v 504
 32.3.3 Solution of the Equation for w .. 505
 32.3.4 Numerical Computation ... 506
32.4 Discussion .. 507
References .. 507

33. Large Deflection of Heated Orthotropic Thin Cylindrical Shell 509
33.1 Introduction .. 509
33.2 Governing Equations .. 509
33.3 Solution of the Problem .. 511
33.4 Numerical Computations and Discussion 513
33.5 Observation and Conclusion .. 514
References .. 515
34. Nonlinear Vibration and Stability of an Orthotropic Sandwich Shell of Double Curvature with Orthotropic Core .. 517
 34.1 Introduction ... 517
 34.2 Governing Equations ... 518
 34.3 Stability of a Shallow Sandwich Shell .. 523
 34.4 Solution for Movable Edge \((A = 0)\) .. 526
 34.5 Vibration Under Dynamic Loading .. 527
 34.6 Numerical Results and Discussions .. 530
 References .. 532

35. Nonlinear Vibrations of a Heated Orthotropic Sandwich Shell of Double Curvature with Orthotropic Core ... 535
 35.1 Introduction ... 535
 35.2 Deflection Under Thermal Loading .. 536
 35.2.1 Governing Equations ... 536
 35.2.2 Solution of the Problem .. 542
 35.2.3 Numerical Results and Discussions .. 545
 35.3 Vibration Under Thermal Loading .. 547
 35.3.1 Governing Equations ... 547
 35.3.2 Solution of Nonlinear Equation by Adomian Decomposition Method ... 550
 35.3.3 Numerical Results and Discussion .. 552
 Appendix .. 554
 References .. 559

36. Nonlinear Vibration of Spherical Shells of Variable Thickness 561
 36.1 Introduction ... 561
 36.2 Governing Equations ... 561
 36.3 Solution for Spherical Shell of Variable Thickness 563
 36.4 Numerical Computations and Graphs ... 566
 36.5 Conclusions ... 567
 References .. 568

Index ... 569
Preface

The monograph is a comprehensive analysis of linear and nonlinear deformations in elasticity and intended not only for graduate students but for professionals in civil, mechanical, aeronautical and metallurgical engineers. The level of discussion is from elementary to the current research level. The concept of this book is divided into two sections. The first section on linear elasticity can be used as a companion text book on contact and fracture mechanics. The second section will be for those who are interested to dent into the area of nonlinear elasticity and the present venture may be the initial step for them towards this direction.

Section 1: Linear Elasticity

Elasticity is a fundamental property of all materials, building, concrete or rocks, all things in nature. Out of various topics of interest in linear elasticity viz. flexure, torsion, bending, contact and crack, etc., mainly contact and crack problems have been considered for both static and dynamic cases. The section on linear elasticity is a comprehensive work on crack and contact problems not necessarily in isotropic material, but in anisotropic as well as smart material like piezoelectric material. After introducing the stress-strain relation, the equation of motion for arbitrary time dependent body forces has been solved using Fourier and Laplace transforms. The method of solving two-dimensional singular integral equations for contact and crack problems in elliptic region has been discussed. As in any standard practice, fairly comprehensive discussion on two-dimensional contact and crack problems in isotropic material by Muskhelishvili's complex variable technique is given and in anisotropic media, Stroh's formalism. This portion is particularly suitable to graduate level engineering students who will get a glimpse of the development from the elementary level right up to research level. In a major portion of the later sections, the three-dimensional unified method valid for the Hertz contact theory and a variety of frictionless contact problem with an elliptic connection both for a rigid punch and a conical indenter has been discussed. In latter section, the elliptic crack interface between both isotropic and transversely isotropic media has been analysed. In particular, the detailed calculation of the stress intensity factor in infinite piezoelectric media has been described in detail and the fracture mechanics principle has been formulated with possible applications.

In the part of dynamical elasticity based on linear elasticity, a model of an earthquake simulation for a realistic faulting motion along an inclined geologic fault plane and a two-dimensional self-similar crack motion taking the earth as an elastic half space for simplicity has been discussed. A discussion of earthquake magnitude from the spectrum analysis is also included.

Developments on non-destructive laboratory detection of cracks in strategic defence material, ballistic missiles, aircraft, etc., require the knowledge of three-dimensional
scattering analysis. A chapter is included on scattering from an elliptic crack/inclusion, etc., by analytic method, both in low and mid-frequency range. The Wiener-Hopf method has been used to study scattering by a half-plane crack in transversely and isotropic infinite media. The study of a solid containing inclusions and distributed cracks is important in a number of engineering fields. In rock mechanics pre-existing cracks plays vital role in the optimum recovery of geothermal energy, oil and gas. A section containing the theory of effective moduli of composite has been included both by static and dynamic method. In static cases, besides the Mori Tanaka method, the Kuster-Toksöz model has been used in rock mechanics. The basic idea about a numerical method like BEM which is of particular interest to the engineering community has also been included.

Section II: Nonlinear Elasticity

Any physical system is nonlinear in general. Real systems involve randomness or stochastic behaviour. Thus, a natural system may be stochastic as well as nonlinear.

In designing structures for construction of bridges, aircraft, missile, hydrospace, shipbuilding, transportation and high-rise buildings, the small deflection theory cannot satisfy the requirements of the design engineers. High speed aeroplanes, missiles and space vehicles are often subjected to large deflections and reveal nonlinear response. But the large deflection theory involves nonlinear equations which are not easy to solve analytically because of its complex nature. To model the problem with its inherent nonlinearities and random fluctuations or uncertain data, some new techniques need to be used.

Section II of the monograph contains seventeen chapters devoted to nonlinear equations of elasticity and their applications to physical problems. Nonlinear vibration of beams, large deflection of ordinary and sandwich plates of different shapes, large deflection of ordinary and sandwich cylindrical shells, orthotropic cylindrical shells, and shells with variable thickness are discussed because of their practical importance. In the above-mentioned cases, vibration and stability of structures have also been discussed for necessity in design and construction. Since thermal effect plays an important role in practical situations, heated structures have also been considered for analysis. Because it is not always possible to find analytical solutions of the nonlinear problems, approximate methods like Ritz’s method, Galerkin’s method, Berger’s method, Banerjee’s modified method and Mazumdar’s method modified by Bera have been used for obtaining the nonlinear solutions. The Adomian Decomposition Method (ADM), which does not require modification like the perturbation method, has also been applied to find the solution in case of orthotropic sandwich shell.

In writing this book some errors are likely to crop up in the above works. The authors will greatly appreciate if the readers bring these errors to their notices.
Acknowledgments

The first author thanks his family members particularly his wife Mrs. Namita Roy for the unflinching support during the preparation of this manuscript. Thanks are due to his daughters Mrs. Arpita Das and Dr. Moumita Roy of Molecular Cytogenetics, Department of Paediatrics, Texas Tech. Health Science, Lubbock, Texas, USA, for help in editing the manuscript. The first author thanks all his research students particularly Dr. T. K. Saha and Dr. Ajit De who helped him in sustaining his interest in the field. The author thanks his colleagues in the Department of Applied Mathematics, University of Calcutta.

The second author gratefully acknowledges the active help and constant support of Dr. Soumen Shaw throughout the preparation of the manuscript. Thanks are also due to Prof. Basudeb Mukhopadhyay for his unfailing help, whenever necessary. The author wishes to thank his son Dibyarup for his tremendous help for arrangement of the manuscript by his technical expertise. He is thankful to his daughter Krishnarpita, son-in-law Pratik, grandson Raayan and daughter-in-law Suparna for their constant encouragement and invariable source of motivation. He owes a deep sense of gratitude to all his friends and relatives for their immeasurable support. Last but not the least, the author acknowledges his heartfelt gratitude to his wife Dr. Manjusha Sinha Bera for editing the entire manuscript with her untiring effort.
Authors

Prof. Arabinda Roy graduated from Presidency College, followed by MSc degree from the University of Calcutta. He has two doctoral degrees to his credit, one from Calcutta University (1969) and the other from the University of Cambridge (UK) in 1972 under Dr. E.R. Lapwood. He was awarded the Commonwealth Research Fellowship to work at Emmanuel College, Cambridge (1969–1972). He started his professional career in 1974 at the Geological Survey of India as Senior Geophysicist. He later joined his alma mater, the Department of Applied Mathematics, University of Calcutta, from where he retired as a Professor in 2007 after serving for more than three decades. He was a visiting Professor at Instituto de investigaciones en Matematicas Aplicadas y sistemas (I.I.M.A.S.), National Autonomous University of Mexico (NAUM) for a year in 1981. He worked as principal investigator in a UGC research project. Four students worked under him for Ph.D. Roy’s research interests primarily include theoretical Seismology, wave propagation, vibration and scattering problems, contact and crack theory and associated fields. He has oft-quoted publications in journals of international repute.

Prof. Rasajit Kumar Bera is a Gold Medalist in Applied Mathematics from University of Calcutta. He received his PhD from Jadavpur University in 1968. Previously, he was a faculty in Presidency College, Kolkata, Bengal Engineering College, Shibpur, and joined as professor and head of the Department of Science in NITTTR, Kolkata, in 1993, from where he retired. He was then invited to act as professor and head of the Department of Mathematics in Heritage Institute of Technology, Kolkata, where he taught for more than ten years. He guided ten students for Ph.D. degrees in different topics of applied mathematics including fractional calculus. Professor Bera has authored 130 research papers published in national and international journals. He has also contributed in more than ten books. *Mathematical Physics for Engineers* (New Age International Publishers) and *Encyclopaedia of Thermal Stresses* edited by Prof. R.B. Hetnarski (Springer) are among them. Professor Bera is an associate editor of *International Journal of Applied and Computational Mathematics* – A Springer Scopus indexed journal. His research interest includes mathematical theory of linear and nonlinear elasticity, generalized thermoelasticity, thermoelasticity in random media, numerical methods and computation and fractional calculus. Among many research projects completed by him, a major project from the Bhaba Atomic Research Centre (BARC) on fractional calculus applied to describe reactor kinetics and flux matching is worth mentioning.
Section I

Linear Elasticity
1

Basic Fundamentals and an Overview

1.1 Introduction

We introduce a basic stress system in an elastic media. Details can be found in any standard text book on elasticity (Love, 1944, Green and Zerna, 1960). We derive the body force equivalent for the body force term in the equation of motion corresponding to displacement and stress discontinuity across a surface. We also derive the representation theorem in terms of Green's function and derivatives using reciprocity theorem. Following Roy (1979) the transform method is used to solve the equation of motion for arbitrary body force. In the process, we derive the Green’s function in an infinite and semi-infinite medium. The last section includes a discussion on basic principle of fracture mechanics.

1.2 Basic Stress System

Under external loading on the boundary of an elastic body, a material point P inside V is displaced from the equilibrium position of rest to a neighbouring point. A planar surface having a normal n, at P experiences a stress τ_{ij} also designated as σ_{ij}. In linear elasticity one is concerned with infinitesimal deformation. All quantities like displacement u_i, etc., are piecewise differentiable functions of coordinate x_i and time t. The deformation vector is

$$d_i = u_i(x_i + dx_i, t) - u_i(x_i, t) \approx \frac{\partial u_i}{\partial x_j} dx_j$$

(1.1)

neglecting the higher derivatives since the deformation is infinitesimal.

The quantities $\frac{\partial u_i}{\partial x_j}$ constitute a Cartesian Tensor of second rank which can be easily seen when changing over to a new coordinate system such as $x'_i = l_{ij} x_j$.

One then obtains the symmetric and antisymmetric tensor e_{ij} and ω_{ij}, where

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x'_j} + \frac{\partial u_j}{\partial x'_i} \right), \quad \omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x'_j} - \frac{\partial u_j}{\partial x'_i} \right)$$

(1.2)
designated as strain and rotation tensors respectively and

$$\frac{\partial u_i}{\partial x_j} = \frac{1}{2} \left(e_{ij} + \omega_{ij} \right)$$

The strain tensor so defined is symmetric (i.e., $e_{ij} = e_{ji}, e_{11}, e_{22}, e_{33}$) are the longitudinal strains along the $x_i, (i = 1, 2, 3)$ axes. $e_{ij}, (i \neq j)$ are the shear strain. They satisfy various compatibility conditions.

The stress-like strain is a tensor of the second order. By Hook’s law they are linearly related to the strain tensor in linear elasticity. In general, in anisotropic elastic media we have

$$\tau_{ij} = C_{ijkl} e_{kl}$$ \hspace{1cm} (1.3)

where C_{ijkl} (in all 81) are called elastic moduli, assumed constants in general. However, they may be considered a function of the coordinate system as in inhomogeneous medium (e.g., in functionally graded media). Symmetry reduces 81 constants to 36. Further, if a strain energy function exists the number of independent constants is 21.

In the isotropic medium elastic properties are the same in all directions. In this case there are only two independent elastic moduli, λ and μ, called Lame’s elastic constants.

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$ \hspace{1cm} (1.4)

$$\tau_{ij} = \lambda e_{ij} \delta_{ij} + 2\mu e_{ij}$$

Other parameters that will be required are the Young’s modulus E, Poisson’s ratio ν. They are in terms of λ and μ

$$E = \frac{\mu (3\lambda + 2\mu)}{\lambda + \mu}, \hspace{0.5cm} \nu = \frac{\lambda}{\lambda + \mu}$$ \hspace{1cm} (1.5)

In a transversely isotropic medium (i.e., a medium having hexagonal symmetry), the stress system is given in terms of five parameters c_{ij}

$$\sigma_{xx} = c_{11} \frac{\partial u}{\partial x} + (c_{11} - 2c_{66}) \frac{\partial v}{\partial y} + c_{13} \frac{\partial w}{\partial z}$$

$$\sigma_{yy} = (c_{11} - 2c_{66}) \frac{\partial u}{\partial x} + c_{11} \frac{\partial v}{\partial y} + c_{13} \frac{\partial w}{\partial z}$$

$$\sigma_{zz} = c_{13} \frac{\partial u}{\partial x} + c_{13} \frac{\partial v}{\partial y} + c_{33} \frac{\partial w}{\partial z}, \hspace{0.5cm} \tau_{xy} = c_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\tau_{yz} = c_{44} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right), \hspace{0.5cm} \tau_{zx} = c_{44} \left(\frac{\partial u}{\partial z} + \frac{\partial u}{\partial x} \right)$$ \hspace{1cm} (1.6)
1.3 Equation of Motion and Various Potentials

The principle of linear balance of linear momentum for the motion of particles under body forces f_i in an arbitrary volume V yields the basic equation of motion as

$$\tau_{ij,j} + f_i = \rho \ddot{u}_i$$

Written in full,

$$\frac{\partial}{\partial x_j} \left(c_{ijkl} \frac{\partial u_k}{\partial x_l} \right) + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}$$ (1.7)

In an isotropic medium, the equation of motion is

$$\nabla (\lambda + \mu) (\nabla . u) + 2\mu \nabla^2 u = \rho \ddot{u}$$

$$\frac{\partial}{\partial x_j} \left((\lambda + \mu) \frac{\partial u}{\partial x_i} + 2\mu \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial x_k^2} \right) \right) u_i + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}$$ (1.8)

We now discuss some general methods of solving the equation of motion. One method is to find potential ϕ, ψ, χ such that

$$u = \text{grad} \phi + \text{div} \text{grad} \psi + \text{curl} \text{curl} \chi = \nabla \phi + \nabla \nabla \psi + \nabla \times \nabla \chi$$ (1.9)

Substituting Eq. (1.9) in Eq. (1.8) we find, potential ϕ, ψ, χ the wave equation

$$\nabla^2 (\phi, \psi, \chi) = \left(\frac{1}{\alpha^2}, \frac{1}{\beta^2}, \frac{1}{\beta^2} \right) \frac{\partial^2}{\partial t^2} (\phi, \psi, \chi)$$ (1.10)

ϕ is the longitudinal wave potential with velocity, $\alpha^2 = (\lambda + 2\mu) / \rho$ and ψ is the SV wave potential with $\beta^2 = \frac{\mu}{\rho}$ and χ is the SH wave potential with the velocity β.

In the elastostatic case, the potentials are (Youngdahl, 1989)

$$u = \nabla \psi - z \nabla \psi + (3 - 4\nu) k \psi + \nabla \times (k \chi)$$ (1.11)

where each of (ϕ, ψ, χ) satisfy the harmonic equation

$$\nabla^2 (\phi, \psi, \chi) = 0, \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$ (1.12)
1.4 Various Transforms Used

We introduce various transforms for solving the equation of motion. While the potential method via the individual wave equation solution is one approach, we usually follow the transform method. We introduce the Fourier transform

\[f(k) = \int_{-\infty}^{\infty} f(x) e^{i\xi x} \, dx, \]

with the inverse transform defined by

\[f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(k) e^{-i\xi x} \, dk \tag{1.13} \]

Similarly, the Fourier transform of functions in two variables is

\[f(\xi, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{i(\xi x + \eta y)} \, dx \, dy, \]

\[f(x, y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i(\xi x + \eta y)} \, dx \, dy, \tag{1.14} \]

Hankel’s transform of \(n \)-th order and its inverse are defined by

\[f(k) = \int_{0}^{\infty} f(r) J_n(kr) \, dr \]

\[f(r) = \int_{0}^{\infty} f(k) J_n(kr) \, dk \tag{1.15} \]

We note further that we represent \(\delta(x) = \delta(x_1) \delta(x_2) \delta(x_3) \) and \(H(t) \) as the Dirac’s delta function and Heaviside unit function.

1.5 General Form of the Elastic Wave Equation

The transform method is used to obtain the solution of the elastic wave equation for arbitrary body forces. We note, the Earth, to a great extent, behaves as an elastic medium. Basic equations of motion are

\[\rho \frac{\partial^2 u_i}{\partial t^2} = \rho F_i + \sum_{ijkl} c_{ijkl} \frac{\partial}{\partial x_j} \left(\frac{\partial u_k}{\partial x_l} \right) \tag{1.16} \]

It is through the body force term \(F_i \) that the simulation of the earthquake process is introduced in the mathematic model. The general type of \(F_i \) considered in an earthquake source mechanism study is either a point source \(F = f \delta(r - r_0) g(t) \) or a couple source. The general form of a single couple is \(F = Mn \nabla f \delta(r - r_0) g(t) \), where \(\nabla \) is the gradient vector, \(f \) is the direction of \(F \), \(M \) is the moment, and \(n \) is the arm of the couple.
A double couple is represented by

$$F = M [n \nabla f + f \nabla n] \delta (r - r_i) g (t)$$

(1.17)

The other most popular model is to consider the earthquake resulting from crack initiation and propagation. A crack results in a discontinuity in the displacement across the crack faces and is thus a dislocation model. The dynamics of the crack source depends on the release of the stress at source region and is governed by the fracture criterion.

Let the displacement or stress be discontinuous in the source coordinate system \((\zeta_1, \zeta_2, \zeta_3)\) across the plane \(\zeta_3 = \zeta_{30}\). To obtain the derivatives in a dislocation model we regard the derivatives as the generalized derivative. Thus, the generalized derivative of \(u_i (\zeta_1, \zeta_2, \zeta_3)\) be represented as \(\frac{\partial}{\partial \zeta_j} (u_i)\). Then from Jones (1964) we have

$$\frac{\partial}{\partial \zeta_i} (u_i) = \frac{\partial u_i}{\partial \zeta_j} + [u_i] \delta (\zeta_3 - \zeta_{30})$$

$$\frac{\partial^2}{\partial \zeta^2} (u_i) = \frac{\partial^2 u_i}{\partial \zeta^2} + \frac{\partial [u_i]}{\partial \zeta_3} \delta (\zeta_3 - \zeta_{30}) + [u_i] \delta (\zeta_3 - \zeta_{30})$$

(1.18)

$$\frac{\partial^2}{\partial \zeta^2} (u_i) = \frac{\partial^2 u_i}{\partial \zeta^2} \quad (j = 1, 2)$$

where \([u_i] = u_i^+ - u_i^-\) is the jump across \(\zeta_3 = \zeta_{30}\).

Substituting the relation Eq. (1.18) in the equation of motion (1.13) where we assume the derivatives as generalized derivative, we obtain for the isotropic case the equivalent body force as

$$F_1 = -[\tau_{13}] \delta (\zeta_3 - \zeta_{30}) - \lambda \left[\frac{\partial u_1}{\partial \zeta_1} \right] \delta (\zeta_3 - \zeta_{30}) - \mu [u_1] \delta' (\zeta_3 - \zeta_{30})$$

$$F_2 = -[\tau_{23}] \delta (\zeta_3 - \zeta_{30}) - \lambda \left[\frac{\partial u_2}{\partial \zeta_2} \right] \delta (\zeta_3 - \zeta_{30}) - \mu [u_2] \delta' (\zeta_3 - \zeta_{30})$$

$$F_3 = -[\tau_{33}] \delta (\zeta_3 - \zeta_{30}) - \mu \left[\frac{\partial u_1}{\partial \zeta_1} + \frac{\partial u_2}{\partial \zeta_2} \right] \delta (\zeta_3 - \zeta_{30}) -$$

$$- (\lambda + 2\mu) [u_3] \delta' (\zeta_3 - \zeta_{30})$$

(1.19)

where \([\tau_{ij}]\) and \([u_i]\) are the jump in the stress and displacement across \(\zeta_3 = \zeta_{30}\).

1.6 Reciprocity Principle and Representation Theorem

The reciprocity principle, which is an important tool in the study of wave propagation in various fields (e.g., elastodynamic, electrodynamic, etc.), follows on writing the transformed equation of motion in the operator form, namely
Linear and Non-Linear Deformations of Elastic Solids

\[L u_t + f_i = -\rho \omega^2 u_i, \quad \forall x \in V \] (1.20)

where

\[L u_t = \frac{\partial \tau_{ij}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(c_{ijpq} \frac{\partial u_p}{\partial x_q} \right) \]

Let \(v_i = v_i(x, \omega) \) be an alternate displacement field which satisfies the conjugate differential equation associated with force \(g_i \),

\[L^* v_j + g_j = -\rho \omega^2 v_j, \quad \forall x \in V \] (1.21)

where

\[L^* v_i = \frac{\partial}{\partial x_j} \left(c_{ijpq} \frac{\partial v_p}{\partial x_q} \right) = L v_i. \]

Since \(L \) is self–adjoint and \(c_{ijpq} \) is symmetric, \(L = L^* \). Now multiplying Eq. (1.20) by \(v_j \) and Eq. (1.21) by \(u_i \) and integrating over the volume \(V \) we obtain

\[\int_V (v_j L u_t - u_i L^* v_j) dV = \int_V (v_j f_i - u_i g_j) dV \]

On transforming the volume integral \(V \) to the surface integral using Gauss integral we obtain in view of the Hermitian property of \(L \),

\[\int_s (v_j \tau_{ij} - u_i \tau_{ji}) n_j dS = \int_V (v_j f_i - u_i g_j) dV \] (1.22)

In deriving Eq. (1.22) we have not imposed any boundary conditions on the surface \(S \).

Let us introduce Green’s function or rather Green’s tensor \(G_{ij}(x, \xi, \omega) \). \(G_{ij} \) satisfies the equation

\[\frac{\partial}{\partial x_j} \left(c_{ijkl} \frac{\partial G_{lm}}{\partial x_l} \right) + \rho \omega^2 G_{lm} = -\delta_{lm} \delta \left(x - \xi \right) \] (1.23)

Thus \(G_{ij}(x, \xi, \omega) \) is defined as the time transformed displacement at \(x \) in the \(i \) direction associated with a point force in the \(j \) direction.

Let now assume the stress on the bounding surface \(S \) vanish. Choose

\[f_i = \delta_{im} \delta \left(x - \xi \right), \quad g_i = \delta_{im} \delta \left(x - \xi' \right) \] (1.24)

with the corresponding displacement \(u_i \) and \(v_i \) be designated as Green’s tensor \(G_{im}(x, x', \omega) \) and \(G_{im} \) respectively.
Then substituting the values of \(f_i, g_j \) Eq. (1.24) in Eq. (1.22) along with the vanishing stress on \(S \) and the integral

\[
\int_V \delta_{ji} \delta_{ip} \delta_j (x' - x) G_{ip}(x, \xi, \omega) dV = G_{ji}(x', \xi, \omega)
\]

we obtain \(G_j(\xi, \xi', \omega) = G_{ji}(\xi', \xi, \omega) \)

or in general \(G_j(\xi, \xi, \omega) = G_{ji}(\xi, x, \omega) \) (1.25)

The reciprocity relation (1.25) is now used to obtain the representation theorem. Let us choose \(g_i(x, \omega) = \delta_{in} \delta(x - \xi) g(\omega) \)

and substitute in Eq. (1.22). We choose the corresponding displacement and traction as given below:

\[
v_i(x, \xi, \omega) = G_{in}(x, \xi, \omega), \quad T_i^n(x, \xi, \omega) = c_{ijkl} \frac{\partial v_k}{\partial x_l} n_j = c_{ijkl} \frac{\partial G_{in}}{\partial x_l} n_j
\]

and finally the representation theorem is obtained as

\[
u_n(x, \omega) = \int_V G_{in}(x, \xi, \omega) f_i(x, \xi, \omega) dV_x + \int_S \left[G_{in}(x, \xi, \omega) \tau_j(x, \omega) - u_i(x, \omega) c_{ijkl} \frac{\partial G_{in}}{\partial x_l} \right] n_j dS \tag{1.26}
\]

The corresponding representation theorem in time domain, on taking the inverse transform is

\[
u_n(x, t) = \int_V G_{in}(x, \xi, t - \tau) f_i(x, \xi, \tau) dV_x = \int_S \left[G_{in}(x, \xi, t - \tau) \tau_j(x, \tau) - u_i(x, \tau) c_{ijkl} \frac{\partial G_{in}}{\partial x_l} \right] n_j dS \tag{1.27}
\]

If there is a stress discontinuity or dislocation across an internal surface \(\Sigma \) there will be an additional integration over the internal surface. If further the surface \(S \) is at infinity the contribution of the integral over \(S \) vanishes due to the radiation condition at infinity and only the integral over \(\Sigma \) remains. Finally, we have

\[
u_n(x, t) = \int_{-\infty}^{\infty} d\tau G_{in}(x, \xi, t - \tau) f_i(x, \xi, \tau) dV_x - \int_{-\infty}^{\infty} d\tau \int_{\Sigma} G_{in}(x, \xi, t - \tau) \left[\tau_j(x, \tau) v_j \right] + \left[u_i(x, \tau) \right] c_{ijkl} \frac{\partial G_{in}}{\partial x_l} v_j d\Sigma \tag{1.28}
\]

where, \(\left[\tau_j(x, \tau) \right] = \tau_j^+ - \tau_j^-, \quad \left[u_i(x, \tau) \right] = u_i^+ - u_i^- \)

are the discontinuity across the surface \(\Sigma \).
1.7 General Solution of the Equation of Motion for an Arbitrary Force System

Let an orthogonal Cartesian coordinate system \((\zeta_1, \zeta_2, \zeta_3)\), called the source coordinate system, describe the source system in the medium and another system on orthogonal Cartesian coordinate system \((x, y, z)\) describe the elastic half-space with \(z = -h\) be the free surface. The origin is at the centre of the circular source and \(xy\)-plane parallel to the free surface. Let \(\zeta_3 = 0\) be the inclined fault plane, in our case. The two coordinate systems are related by

\[
(x, y, z)^T = A_0 (\zeta_1, \zeta_2, \zeta_3)^T
\]

(1.29)

where \(A_0\) is the orthogonal matrix and \(T\) denotes the transpose of the matrix.

Similarly the displacements in \((x, y, z)\)-system \(u = (u_1, u_2, u_3)\) and \((\zeta_1, \zeta_2, \zeta_3)\)-system \(u' = (u'_1, u'_2, u'_3)\) are related by \(u = A_0 u'\). Here \(a_ia_0 = \delta_{ij}\) where \(\delta_{ij}\) is the Kronecker delta function, the equation of motion in an infinite medium is now written in the source coordinate system as

\[
\rho \frac{\partial^2 u'_i}{\partial t^2} = \sigma_{ij} + F'_i
\]

(1.30)

where \(F'_i\) \((i = 1, 2, 3)\) vanishes outside the source region. \(F'_i\) may be a planar, point or volume source and

\[
\sigma_{ij} = \lambda \nabla \cdot u + \mu \left(\frac{\partial u'_i}{\partial \zeta_j} + \frac{\partial u'_j}{\partial \zeta_i} \right)
\]

(1.31)

where Kronecker delta \(\delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}\)

\(\lambda, \mu\) and \(\rho\) are elastic moduli and density respectively.

We introduce the following Fourier and Laplace transforms respectively as

\[
U_j(k, v, s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_j(\zeta_1, \zeta_2, \zeta_3) e^{-i(k \zeta_1 + v \zeta_2 + s \zeta_3)} d\zeta_1 d\zeta_2 d\zeta_3
\]

\[
F(p) = \int_0^\infty f(t) e^{-pt} dt
\]

(1.32)

Transforming Eq. (1.20) we obtain
\[
\left(\beta^2 s^2 + \alpha^2 k^2 + \beta^2 v^2 + p^2\right)U''_1(k,v,s,p) + \left(\alpha^2 - \beta^2\right)kvU'_1(k,v,s,p)
\]
\[
+ \left(\alpha^2 - \beta^2\right)\frac{F'_1(k,v,s,p)}{\rho}(\alpha^2 - \beta^2)
\]
\[
kvU''_1(k,v,s,p) + \left(\beta^2 s^2 + \alpha^2 v^2 + \beta^2 k^2 + p^2\right)U'_1(k,v,s,p)
\]
\[
+ \left(\alpha^2 - \beta^2\right)\frac{F'_1(k,v,s,p)}{\rho}(\alpha^2 - \beta^2)
\]
\[
ksU''_1(k,v,s,p) + \left(\alpha^2 - \beta^2\right)vsU'_1(k,v,s,p)
\]
\[
+ \left(\alpha^2 s^2 + \beta^2 k^2 + \beta^2 v^2 + p^2\right)U'_1(k,v,s,p) = \frac{F'_1(k,v,s,p)}{\rho}
\]

(1.33)

Solving Eq. (1.33) for \(U'_j\) (for \(j = 1, 2, 3\)) and taking the inverse Fourier and Laplace transforms successively we obtain the transformed variable

\[
u'_j = \frac{1}{(2\pi)^4 i} \int_{Br} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{p \tau + ik_1 + \rho \zeta_1 + \rho \zeta_2 + \rho \zeta_3} dk dv ds dp
\]

(1.34)

where

\[
s_\alpha = \left(k^2 + v^2 + \frac{p^2}{\alpha^2}\right)^{1/2}, \quad s_\beta = \left(k^2 + v^2 + \frac{p^2}{\beta^2}\right)^{1/2}
\]

(1.35)

and \(Br\) denotes the Bromwich contour. \(P_j\) can be easily written from Eq. (1.5) in terms of adjoint matrices of \((3 \times 3)\) matrix formed with coefficients of \(U_J\) in the left-hand side of Eq. (1.5).

We note that \(u'_j\) are the displacement components along \((\zeta_1, \zeta_2, \zeta_3)\) and are related through \(u = Au'\) with the displacement components \(u_j\) along \((x,y,z)-\)axes. We now change over to the coordinate system \((x,y,z)\) from \((\zeta_1, \zeta_2, \zeta_3)\). The integration variable \((k,v,s)\) are now related to the new integration variable \((\xi, \eta, \zeta)\) as

\[
\Omega = A_k \Omega
\]

(1.36)

or

\[
\Omega' = A_k^{-1} \Omega
\]

(1.37)

where \(\Omega\) and \(\Omega'\) are the column matrices with element \((k,v,s)\) and \((\xi,\eta,\zeta)\) respectively.
Thus, on changing over to the new integration variables, the displacements are given by

\[
u_i = \frac{1}{(2\pi)^4} \int B \int \int \int \int \int \frac{P_j e^{pt+i(\xi x + \eta y + \zeta z)}}{\alpha^2 \beta^4 (\zeta^2 + \nu^2_\alpha) (\zeta^2 + \nu^2_\beta)} dp d\xi d\eta d\zeta (1.38)
\]

where

\[
\nu_\alpha = \left(\xi^2 + \eta^2 + \frac{p^2}{\alpha^2} \right)^{1/2}, \quad \nu_\beta = \left(\xi^2 + \eta^2 + \frac{p^2}{\beta^2} \right)^{1/2} (1.39)
\]

and \(P_j\) can be written from \(P_j\) on making use of transformation rule (1.8).

We now evaluate Eq. (1.31). Let us assume that the body forces are distributed over a region extending from \(z = 0\) to \(z = \h_0\). We note that the only poles in the \(\zeta\)-plane are \(\zeta = \pm \nu_\alpha\) and double poles at \(\zeta = \pm \nu_\beta\). Then on evaluating for \(z < 0\) at the respective poles (i.e., at \(\zeta = -\nu_\alpha, \zeta = \nu_\beta\)) the displacement in an infinite medium, after simplification, can be written in \((x,y,z)\) system as, for \(z < 0\)

\[
u_{\text{inc}} = \int B \int \int \int \int \int \frac{e^{pt+i(\xi x + \eta y + \zeta z)}}{16\pi^2 p^3 i \rho} \left[i \left\{ (\xi + \eta j) - \zeta k \right\} \frac{A}{\zeta_\alpha} e^{\nu_\alpha z} + B e^{\nu_\beta z} \right.
\]

\[
\times \left\{ i (\xi + \eta j) + \frac{\xi^2 + \eta^2}{\zeta_\beta} \right\} + \frac{p^2}{\beta^2} C (\eta i - \xi j) e^{\nu_\beta z} \right] d\xi d\eta d\rho (1.40)
\]

where \(\nu_{\text{inc}}\) denotes the incident field; \(i,j,k\) are unit vectors in the directions of \(x-, y-, z\)-axes and

\[
A = i \left(D_\alpha \xi + E_\alpha \eta \right) + \nu_\alpha G_\alpha
\]

\[
B = i \left(D_\beta \xi + E_\beta \eta \right) - \frac{\nu_\beta G_\alpha}{\xi^2 + \eta^2} + G_\alpha
\]

\[
C = \frac{i \left(D_\beta \eta - E_\beta \xi \right)}{\left(\xi^2 + \eta^2 \right) \nu_\beta} (1.41)
\]

\[
D = F_1(k,v,s,p) a_{11} + F_2(k,v,s,p) a_{12} + F_3(k,v,s,p) a_{13}
\]

\[
E = F_1(k,v,s,p) a_{21} + F_2(k,v,s,p) a_{22} + F_3(k,v,s,p) a_{23}
\]

\[
G = F_1(k,v,s,p) a_{31} + F_2(k,v,s,p) a_{32} + F_3(k,v,s,p) a_{33}
\]

\(D_\alpha\) and \(D_\beta\) are obtained from \(D\) after changing over from variable \((k,v,s)\) to \((\xi,\eta,\zeta)\) through transformation (1.8) and setting \(\zeta = -\nu_\alpha, \zeta = -\nu_\beta\) respectively. Similar meaning is attached to \(E_\alpha, E_\beta, G_\alpha, G_\beta\).
In particular, when the source coordinate \((\zeta_1, \zeta_2, \zeta_3)\) are the same as \((x, y, z)\) coordinate system, we have

\[
D = X(\zeta, \eta, \zeta, p), \quad E = Y(\zeta, \eta, \zeta, p), \quad F = Z(\zeta, \eta, \zeta, p)
\]

To obtain the displacement field in the elastic half space, we add up to the incident field in \(-h < z < 0\) given by Eq. (1.9) the reflected field, \(u_{\text{ref}}\) which is the solution of the equation of motion. The corresponding potentials \(\phi, \Psi_1, \chi_i\) are respectively solution of appropriate wave equation and are given by

\[
u_{\text{ref}} = \nabla \phi + \nabla \times (\Psi_i k) + \nabla \times (\chi k) \tag{1.42}
\]

where

\[
(\phi, \Psi_1, \chi_i) = \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{16\pi^2 i} \left[A'_i(\xi, \eta) e^{-\nu z}, B'_i(\xi, \eta) e^{-\psi z}, C'_i(\xi, \eta) e^{-\chi z} \right] d\xi d\eta dp
\]

The constants \(A'_i, B'_i, C'_i\) are obtained from the condition of vanishing of stress on the free surface \(z = -h\) (i.e., \(\sigma_{ij}^{\text{inc}} + \sigma_{ij}^{\text{ref}} = 0\)).

Then the values of \(u_{\text{ref}}\) is given by

\[
u_{\text{ref}} = \int_{-b}^b \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{16\pi^2 i} \left[A' \nu_\alpha(\xi, \eta) - \frac{4B F(\xi, \eta)}{v_\alpha F(\xi, \eta)} \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right] d\xi d\eta dp
\]

In particular the surface displacement \(u(t, x, y, -h) = u_{\text{inc}} + u_{\text{ref}}\) can be written on setting \(z = -h\) as

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

In particular

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]

\[
u(t, x, y, -h) = \frac{1}{8\pi^2 i} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{e^{i(\xi + \eta y)}}{\mu F(\xi, \eta)} \left[A e^{-\nu p} \left(2v_\mu i(\xi i + \eta j) - \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2}\right) \right) \right]
\]
where

\[
F(\xi, \eta) = \left(2\xi^2 + 2\eta^2 + \frac{p^2}{\beta^2} \right)^2 - 4(\xi^2 + \eta^2)\nu_\alpha\nu_\beta
\]
(1.44)

and \(A, B, C\) are given by Eq. (1.38). The results are valid for any arbitrary force system.

1.8 Green’s Function in an Infinite Medium

We note that Green’s function \(G_{ij}\) is the \(i\)-th component of displacement for a point force in the \(j\)-direction. We have for a point source in the \(i\)-direction

\[
\bar{F}_j = \int_0^\infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\xi x-i\eta y} e^{-i\xi z} e^{-i\xi x-i\eta y} e^{-i\xi z} \delta(x-x_0) \delta(y-y_0) \delta(z-z_0) \, dx \, dy \, dz \\
\times dx dy dz dt \\
= \delta(p + i\omega)e^{-i\xi x_0-i\eta y_0-i\xi z_0}
\]
(1.45)

Also, we have the relation

\[
\frac{1}{2\pi} \int_0^\infty \int_{-\infty}^{\infty} \int \frac{1}{\nu} e^{-i\xi(x-x_0)-i\eta(y-y_0)-i\xi z} \, dx \, dy \, dz = \frac{e^{-i\omega R}}{R}
\]
(1.46)

and

\[
v = \sqrt{\xi^2 + \eta^2 - \omega^2/c^2}, \quad R = \left[(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 \right]^{1/2}
\]

Substituting these values in Eq. (1.40) and computing the displacement \(u_t\) in the \(x\) direction for successive value \(j = 1, 2, 3\) one generates

\[
(H_{11}, H_{12}, H_{13}) = \frac{e^{-i\omega t}}{4\pi\rho \omega^2} \left(f_1 \frac{\partial^2}{\partial x_1^2}, f_2 \frac{\partial^2}{\partial x_2^2}, f_3 \frac{\partial^2}{\partial x_3^2} \right) \left(\frac{e^{i\omega R}}{R} - \frac{e^{i\alpha R}}{R} \right)
\]

\[
+ \left(f_1, f_2, f_3 \right) \frac{\omega^2}{\beta^2} \frac{e^{i\omega R}}{R}
\]

Hence, on setting \(f_1 = f_2 = f_3 \equiv 1\) on obtaining similarly the other displacement component and identifying \(H_{ij}\) as the Green’s tensor \(G_{ij}\), we obtain

\[
G_{ij} = \frac{e^{-i\omega t}}{4\pi\rho \omega^2} \left[\frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{e^{i\omega R}}{R} - \frac{e^{i\alpha R}}{R} \right) + \frac{\omega^2}{\beta^2} \delta_{ij} \frac{e^{i\omega R}}{R} \right]
\]
(1.47)
On taking the limit of Eq. (1.47) as \(\omega \to 0 \), elastostatic Green’s tensor can be found as,

\[
G_{ij}^0 = \frac{1}{4\pi\mu} \left[\frac{1}{1-v} \frac{\partial^2}{\partial x_i \partial y_j} R + \frac{\delta_{ij}}{R} \right]
\]

(1.48)

To obtain the Green’s tensor in two dimensions we use the result

\[
I = \int_{-\infty}^{\infty} e^{-i\omega R} \frac{dz}{R} = 2\int_{-\infty}^{\infty} e^{-i\omega \rho \sqrt{p^2 - r^2}} dp = 2iH_0^1 \left(\frac{\omega r}{c} \right)
\]

(1.49)

on substituting \(R^2 = z^2 + r^2 = p^2 \),

where \(H_0^1(z) \) is the Hankel function of the first kind.

Thus, the two-dimensional Green’s tensor is

\[
G^t_{ij} = \frac{ie^{-i\omega t}}{2\rho \omega^2} \left[\frac{\partial^2}{\partial x_i \partial x_j} \left\{ H_0^1 \left(\frac{\omega r}{\beta} \right) - H_0^1 \left(\frac{\omega r}{\alpha} \right) \right\} + \frac{\omega^2}{\beta^2} \delta_{ij} H_0^1 \left(\frac{\omega r}{\beta} \right) \right]
\]

(1.50)

where

\[
r = \left[(x - \xi_0)^2 + (y - \eta_0)^2 \right]^{1/2}
\]

For arbitrary time dependent force \(f(t) \), Green’s tensor in infinite medium is obtained on multiplying by the Fourier transform of \(f(\omega) \) of \(f(t) \) as

\[
G_{ij}(x,\xi,t) = \int_{-\infty}^{\infty} G_{ij}(x,\xi,\omega) f(\omega) e^{-i\omega t} d\omega =
\]

\[
\frac{1}{4\pi\rho} \int_R^\infty \left[\frac{3\gamma_i\gamma_j - \delta_{ij}}{R^3} \int_0^\infty \frac{R}{\alpha} \tau f(t-\tau) d\tau + \frac{1}{R^2} \gamma_i\gamma_j f \left(\frac{t-R}{\alpha} \right) \right]
\]

(1.51)

\[-\frac{1}{R\beta^2} \left(\gamma_i\gamma_j - \delta_{ij} \right) f \left(t - \frac{R}{\beta} \right),
\]

where

\[
\gamma_i = \frac{x_i - \xi_i}{R}.
\]

Similarly following similar procedure as above the Green’s function in a half space can be obtained on substituting the force system in Eq. (1.41) and the result agrees with Johnson (1974).
1.9 Principle of Fracture Mechanics

All things on Earth, be it a building, dam, aircraft or any material, perish with time due to fracture in the material. Fracture initiates near an incipient crack which is initially in crystalline form, growing from atomistic scale to macro crack. Finally, macro cracks grow in size leading to the final destruction of the material or may stop growing due to frictional resistance that comes into play. In the ruptured region, which we call a crack, the traction is suddenly relieved and drops to the difference between the initial stress and the frictional stress. The region ahead of the crack tip is called the process zone and is associated with usually irreversible process of microscopically quite complex breaking of bond forces, which can not be described in terms of the classical continuum mechanics. In metals, and for the majority of brittle materials, possible inelastic processes including plastic deformations are restricted to a small region of the process zone and can be neglected from macroscopic point of view. Then the cracked body can be assumed as linear elastic on the whole body and the law of linear fracture mechanics can be applied.

Griffith (1920) first proposed the energy criterion governing the onset of crack propagation. Fracture of a material component, literally speaking, is the breaking of the material in two or more parts. Within the ambit of linear fracture mechanics, fracture is thus the creation of a new surface which leads to a release of the elastic energy from the body while the strain energy inside the process zone decreases. The energy criterion in the general form is

\[\delta (E + K) + \delta \Gamma = \delta P + \delta Q \]

where \(\Gamma \) is the fracture surface energy, \(K \), the kinetic energy, \(Q \), the non-mechanical energy in the form of heat, \(E \) is the internal energy and \(P \) is the work done by the external load.

In the quasi-static case \(\delta K \) and \(\delta Q \) can be neglected. According to Griffith, the fracture surface energy \(d\Gamma \) is related as \(d\Gamma = 2\gamma dA \). Then the energy criterion is

\[\frac{d\Pi}{dA} + \frac{d\Gamma}{dA} = 0, \]

where

\[\Pi = \iint (W - \tau_{ij}n_iu_j)dA \quad (1.52) \]

Then, noting that \(G \), the total energy release is

\[G = -\frac{d\Pi}{dA} \frac{d\Gamma}{dA} = 2\gamma = G_c \quad (1.53) \]

\(G_c \) is the critical energy. Thus, in general, the fracture criterion can be stated as \(G \leq G_c, G_c = \text{constant.} \)

The equality corresponds to a state of neutral equilibrium.
1.9.1 Irwin’s Fracture Criterion

Major parts of this book are concerned with the indentation and crack problem. We shall find that Hertzian contact generates conical fracture at the contact edge. This is mathematically inherent in the solution of the singular integral equations which requires crack edge conditions. The mathematical singularity results in the singular stress as $\sigma_{ij} \sim K_i (2\pi r)^{-1/2}$, where K_i is called the stress intensity factor or simply SIF. K_i plays an important role in deriving the fracture criterion. Irwin conjectured that this singular stresses at the crack tip supply the necessary energy for the creation of the new surface as the crack propagates. The energy release rate is

$$d\Pi \sim \frac{\kappa + 1}{8\mu} K_i^2 da$$

For general loading when all the three modes are present, the crack energy is

$$G = \frac{d\Pi}{da} = \frac{1}{2\pi} \left[(1-\nu) K_i^2 + K_{II}^2 + K_{III}^2 \right]$$

Thus, the Griffith’s fracture criterion for normal loading $G = G_c$ can be written as

$$K_i = K_{IC}.$$ \hspace{1cm} (1.55)

Eq. (1.55) is known as Irwin’s fracture criterion. K_{IC}, G_{IC} are known as the fracture toughness and the crack resistance force, respectively. A crack will begin to move if the stress intensity factor increases to K_{IC} for mode I plain strain deformation. Irwin’s fracture criterion is widely used in engineering application and the fracture toughness K_{IC} are available for many geometrical configurations in standard engineering handbooks. K_{IC} is the value of K_i at the time of crack extension. It defines the onset of crack extension, but does not indicate whether the material will fracture. Despite the stress at the crack tip being infinite, the Griffith’s energy balance criterion must be satisfied for the crack to extend under applied stress. However Griffith’s energy criterion is preferred in interface cracks, particularly in composite material or laminates.

1.9.2 Other Fracture Criteria

Many other fracture criteria such as J integral, strain energy density theory have been suggested Sih (1972), Rice (1968) using the conservation integrals proposed

$$J = \int_{r} \left(Wdy - T \cdot \frac{\partial u}{\partial x} \right) dx$$

(1.56)

As the fracture criterion and T is the traction vector in the outward normal along Γ and Γ is a curve surrounding the crack tip.

For quasi-static linear fracture $J = G$ \hspace{1cm} (1.57)

Thus $J = J_c$ is the alternate fracture criterion and can be readily used for plastic and inelastic deformation.
References

Muskhelishvilli, N. I. *Some Basic Problems of the Theory of Elasticity* (English translation by J. R. M. Radok), Noordhoff, Groningen, the Netherlands, 1953.

Muskhelishvili, N. I. *Some Basic Problems of the Theory of Elasticity*, Noordhoff Ltd., Groningen, the Netherlands, 1953a.

Muskhelishvili, N. I. *Singular Integral Equations*, English translation by J. R. M. Radok, Noordhoff, Moscow, Russia, 1953b.

Muskhelisvili, N. I. *Some Basic Problem of the Mathematically Theory of Elasticity*, Noordorre, Leyden, the Netherlands, 1953.

Gladwell, G. M. I. *Contact Problem in the Classical Theory of Elasticity*, Sijthoff and Noordoff, Amsterdam, the Netherlands, 1980.

Muskhelishvili, N. I. *Singular Integral Equation* (transl by J. R. M. Radok), Noordhoff, Groningen, the Netherlands, 1953.

Mushkhelishvili, N. I. *Singular Integral Equation*, Noordhoff Ltd, Groningen, the Netherlands, 1953.

Shah, P. M. On the dynamic response of foundation system Thesis, Rice University at Houston, TX, 1968.

Meguire, D. P. The application of elastomeric lead-lag dampers to helicopter rotors, Lord Library No. LL2133, 1960.

Fulton, R. E. Buckling analysis and optical proportions of sandwich cylindrical shells under hydrostatics pressure, Structural Research Series Report No.199, Civil and Engineering Department, University of Illinois, Champaign, IL, June, 1960.

Reissner, E. Small bending and stretching of sandwich-type shells, NACA Report 975, (Formerly NACA TN 1832), 1950.

