Contents

FOREWORD

Susanne Zänker

ACKNOWLEDGEMENTS

CONTRIBUTORS

1. INTRODUCTION AND OVERVIEW OF SETTING UP STUDIES TO GOOD CLINICAL PRACTICE

Nigel Dent

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of Good Practices</td>
<td>2</td>
</tr>
<tr>
<td>Background to the Authors and the Chapters</td>
<td>3</td>
</tr>
<tr>
<td>Objective of Studies</td>
<td>3</td>
</tr>
<tr>
<td>Control of Studies</td>
<td>3</td>
</tr>
<tr>
<td>Regulation Versus Compliance</td>
<td>4</td>
</tr>
<tr>
<td>Study Conduct</td>
<td>4</td>
</tr>
<tr>
<td>Factors for Success</td>
<td>5</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
</tbody>
</table>

2. INTERNATIONAL HARMONIZATION AND THE CONDUCT OF CLINICAL STUDIES TO SUPPORT THE APPROVAL OF NEW ANIMAL DRUGS: THE U.S. PERSPECTIVE

Herman M. Schoenemann III

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Oversight</td>
<td>10</td>
</tr>
<tr>
<td>Noncompliance</td>
<td>10</td>
</tr>
<tr>
<td>VICH</td>
<td>12</td>
</tr>
</tbody>
</table>
3. THE ROLE OF THE INVESTIGATOR

Mike Proven

Put It in the Protocol
Becoming a Complete Investigator
Conclusion
Appendix 3.1 Curriculum Vitae
Appendix 3.2 Informed Consent Form

4. THE ROLE OF THE MONITOR

Alan W. Hill

Pre-Study
During the Study
Post-Study

5. QUALITY ASSURANCE ON VETERINARY CLINICAL TRIALS IN THE UNITED STATES

Rainer Muser

Background
What Is Quality Assurance?
The Benefits of Quality Assurance
The Responsibility for Quality and Where Quality Assurance Fits
Summary
References
Bibliography
Useful Addresses

6. SETTING UP GCP TRIALS IN FISH

Janet Stone and Alastair McLean

The Study Site
Protocol
Standard Operating Procedures
Study Design
Test Materials
Collection of Data
Setting Up GCP Trials in Poultry

Robert J. Grant

1. Protocol Development—Most Critical Phase of the Trial
2. Investigational New Drug Application and Notification for Pivotal Trials
4. Choosing the Trial Site
5. Trial Oversight by the Monitor, Investigator, Quality Control, and Quality Assurance
6. Poultry Trials—Special Needs
7. Final Report
8. References

Setting Up GCP Trials in Companion Animals

Sue Lester

1. Permission
2. Protocol
3. Procedures
4. People
5. Partners, Premises and "Paper"
6. Protection
7. Precaution
8. Investigational Product
9. Pets
10. Conclusion
11. References

Setting Up GCP Trials in Pigs

Andrew R. Peters

1. The Global Pig Industry
2. Planning and Organising GCP(V) Field Studies—The Responsibilities
3. Case Studies
4. Acknowledgements
5. References
6. Further Reading
14. CONTRACT RESEARCH FARMS AND THEIR INVOLVEMENT WITH GCP STUDIES 135

Bridget Drew and Helen Biggadike

Features of a Contract Research Farm—Benefits to the Sponsor	136
Contract Research Farm—Check-list	139
Conclusion	140

15. THE PRACTISING VETERINARIAN’S ROLE IN CLINICAL TRIALS 141

John Carr

Advantages of Being Involved in Clinical Trials	142
Disadvantages of Being Involved in Clinical Trials	142
Summary	146
Bibliography	147

16. STANDARD OPERATING PROCEDURES 149

Ramzan Visanji

SOP on How to Write an SOP	150
SOP for Writing a Protocol	152
SOP for Selecting Study Sites and Investigators for Clinical Studies	152
SOP for the Responsibilities of the Monitor in Clinical Studies	153
SOP for the Roles and Responsibilities of an Investigator	154
SOP for Obtaining Informed Consent	157
SOP for the Final Trial Report (FTR)	158
SOP for Archiving	160
Standard Operating Procedures for the Quality Assurance Unit	166
Bibliography	166

17. THE GENERIC PROTOCOL 169

Carolyn Dent

<p>| Title and Unique Identifier | 170 |
| Contents | 171 |
| Study Contacts | 171 |
| Schedule of Events | 171 |
| Operational Matters | 171 |
| Justification | 172 |
| Objective | 172 |
| Legal Requirements | 173 |
| Study Design | 173 |
| Study Animals | 173 |
| Adverse Events | 176 |</p>
<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigational Veterinary and Control Products</td>
<td>176</td>
</tr>
<tr>
<td>Treatments</td>
<td>176</td>
</tr>
<tr>
<td>Disposal of Study Animals, Products of Study Animals and Investigational Veterinary Products</td>
<td>177</td>
</tr>
<tr>
<td>Assessment of Effectiveness</td>
<td>177</td>
</tr>
<tr>
<td>Statistics</td>
<td>179</td>
</tr>
<tr>
<td>Handling of Records</td>
<td>179</td>
</tr>
<tr>
<td>References</td>
<td>180</td>
</tr>
<tr>
<td>Appendices</td>
<td>180</td>
</tr>
<tr>
<td>Issuing the Protocol</td>
<td>180</td>
</tr>
<tr>
<td>Amendment to the Final Protocol</td>
<td>181</td>
</tr>
<tr>
<td>Deviation to the Protocol During the Study Period</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td>181</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>181</td>
</tr>
<tr>
<td>18. HOW TO WRITE THE FINAL STUDY REPORT</td>
<td>183</td>
</tr>
<tr>
<td>K. L. Ankenbauer-Perkins and A. M. Alexander</td>
<td></td>
</tr>
<tr>
<td>The Final Study Report—Definition</td>
<td>184</td>
</tr>
<tr>
<td>Purpose of the Final Study Report</td>
<td>184</td>
</tr>
<tr>
<td>Authorship</td>
<td>184</td>
</tr>
<tr>
<td>Preparatory Steps for Commencing the Final Study Report</td>
<td>185</td>
</tr>
<tr>
<td>Formatting the Final Study Report</td>
<td>189</td>
</tr>
<tr>
<td>Assembling the Final Study Report</td>
<td>189</td>
</tr>
<tr>
<td>Changes to the Final Study Report</td>
<td>195</td>
</tr>
<tr>
<td>Summary</td>
<td>196</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>196</td>
</tr>
<tr>
<td>Reference</td>
<td>196</td>
</tr>
<tr>
<td>19. DATA, STATISTICAL ANALYSIS AND REPORTING FOR VETERINARY CLINICAL TRIALS</td>
<td>197</td>
</tr>
<tr>
<td>George Gettinby</td>
<td></td>
</tr>
<tr>
<td>The Data Culture</td>
<td>198</td>
</tr>
<tr>
<td>Principles of the Statistical Test and Confidence Interval Approaches</td>
<td>199</td>
</tr>
<tr>
<td>Important Animal Designs</td>
<td>202</td>
</tr>
<tr>
<td>Good Statistical Practice</td>
<td>208</td>
</tr>
<tr>
<td>Changing Trends and Issues</td>
<td>213</td>
</tr>
<tr>
<td>Conclusion</td>
<td>214</td>
</tr>
<tr>
<td>References</td>
<td>214</td>
</tr>
</tbody>
</table>
20. REGISTRATION SUBMISSIONS FOR VETERINARY MEDICINES

Gillian Cowan

Regulatory Affairs—A New Profession
Product Types
The Regulatory Authorities
Regulatory Procedures
Compilation of the Dossier
Gaining an EU Approval
Release of Product onto the Market
Licence Maintenance and Line Extensions
Conclusion
Regulations

21. LARGE-SCALE PRODUCTION OF ECTOPARASITES FOR USE IN VETERINARY TRIALS

Martin Murphy, Leonard Moran, Seamus Conroy and Catherine Caulfield

Evolution of Ectoparasite Study Methodologies
Principles for the Establishment of Flea Breeding Units
Operation of the Flea Breeding Units
Steps in Flea Production
Species of Fleas Reared for Studies
Interaction of Flea Production Unit and Veterinary Trials Division
Tick Breeding
Acknowledgements
Bibliography

22. AUDITING GCP TRIALS

Zelda Carr

Facility Audit
In-Life Phase Audits
Checking the Raw Data
Auditing the Study Report
Conclusion

23. MULTISITE STUDIES

Lucy Whitfield

Why Perform Trials at Several Sites?
Trial Documents
Recording Data
Veterinary Clinical Trials from Concept to Completion

Identification of Suitable Sites 260
Organisation of Sites 260
Trial Monitoring 262
Long-Term Trials 263
Laboratories 263
Quality Assurance 264
Archiving 264
Commercial Difficulties 264
Shipment of Investigational Product 265
Conclusion 266

APPENDICES 269

1. Good Clinical Practice 269
2. The British Association of Research Quality Assurance 297
3. FEDESA 301
4. COMISA 305

INDEX 311
This book is dedicated to

Harefield Transplant Hospital
(Middlesex)

and

Queensview Medical Center
(Northampton)
Foreword

Susanne Zänker

A genius is a talented person who does his homework.
Thomas A. Edison, 1847–1931

The concept of Good Clinical Practice (GCP) has its source in the United States and is intended to give guidance on the best practice for running clinical trials in humans. The importance of this concept was acknowledged rapidly in other regions of the world, and consequently rules had been set for carrying out controlled studies to establish the safety and efficacy of new veterinary medicinal products to support an application for a marketing authorization. In view of the current stream of harmonization of standards and the globalization of business, the need to also have globally acceptable standards for veterinary medicinal products was expressed by both regulatory authorities and industry.

For that purpose, in 1996, under the initiative of the Office International des Epizooties (OIE), the International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) was created. In the VICH process, industry and authorities are collaborating to develop harmonized regulatory requirements based on science that will also lead to a reduction of animals needed for tests, as studies will be mutually recognized. One of the first topics identified for harmonization was GCP. The approval of this VICH guideline by all three of the regions involved, namely, the European Union, the United States and Japan, on 15 June 2000 (for implementation by July 2001) was a major milestone in the history of both international harmonization of standards and the concept of GCP. This book aims to explain this concept and to give guidance about the role and responsibilities of all those who are involved in the design and realization of clinical trials, including
clinical investigators, monitors, veterinary surgeons and nurses, sponsors and auditors.

In clinical trials, the efficacy and safety of a veterinary medicinal product are tested under more or less real conditions. In fact, as clinical trials are the last step in a long research and development process, by this stage much time and expenditure have already been invested in the future product.

It is therefore of paramount importance to have a clear understanding of what is required in a clinical trial in order to ensure the smooth progress of the project toward the next and final step—the registration of the product. It should be kept in mind that the duration of the development programme of a medicinal product, from its chemical conception until the marketing authorization, typically is between 8 and 10 years, and the costs involved amount to many millions of Euros. The veterinary medicinal market is relatively small and highly fragmented; therefore, the return on investment for each product is very limited when compared to human medicinal products, even though the investments in development are similar.

This comprehensive book provides some scientific, biological and regulatory background, which will be invaluable to teachers, research workers, regulatory affairs staff and those directly involved in clinical trials. It also provides specific guidance for each animal species, taking into account the differences and needs in the management system.

Indeed, multidisciplinary knowledge is needed to design and carry out clinical trials, as different conditions have to be respected for fish, poultry, companion animals, calves, sheep, equidae and so on. The roles and responsibilities of investigators, sponsors and monitors need to be clearly defined. Above all, success is possible only if the study is carefully designed, the personnel are qualified and committed and, equally important, continuous communication among all involved people is ensured.

More procedural aspects, such as quality assurance, Standard Operating Procedures for designing and reporting, statistical analysis and auditing, complement the practical aspects, thereby helping to make this book a valuable reference.

The reader will quickly realize that this book is a unique achievement, which was possible only through the hard work, team spirit and co-operation of all the authors involved.

It was my personal pleasure to read all of the chapters, and a great honor to write a foreword to this book. It acknowledges FEDESA's contribution to the improved understanding and implementation of GCP in Europe in 1993/94 and thereafter at an international level through its involvement in VICH.

Susanne Zänker
FEDESA
Brussels, Belgium
December 2000
Publication of this book would not have been possible without the help and enthusiastic support of Susanne Zänker and Sophie Federicks (FEDESA). Thanks also to Tracey Kiford and Jane Steinmann of Interpharm for their patience, understanding and guidance in the preparation of this book.

We finally would like to acknowledge the help given by Ramzan Visanji's family, Koy Kee, Kassam and Yasmin Visanji, from concept to completion of the book. We are greatly indebted to them for their significant contribution.

Nigel Dent
Ramzan Visanji
December 2000
Contributors

BOOK EDITORS

Nigel Dent

Nigel Dent is a consultant (Country Consultancy) specialising in designing and auditing toxicology and clinical quality assurance programmes for international pharmaceutical, veterinary, agrochemical and contract research laboratories. Mr. Dent has over 35 years of experience within the pharmaceutical industry. Trained in applied biology and biochemistry, he has held senior management positions in clinical chemistry, toxicology and quality assurance for Huntingdon Research Centre, Inveresk Research International, Roussel Laboratories and Hoechst UK Pharmaceuticals.

Mr. Dent was a founding member of the UK QA Group, now known as the British Association of Research Quality Assurance (BARQA), and is a board member and chairman of the Animal Health Committee. He was the newsletter editor for 10 years, from 1986 to 1996. Mr. Dent is also president of the International Society of Quality Assurance (ISQA); president and founding member of the Association of Consultants to the Bioscience Industries (ACBI); and a member of the U.S. Society for Quality Assurance (SQA), the Drug Information Association (DIA) and the Association of Clinical Research Professionals (ACRP).

Ramzan Visanji

Ramzan Visanji has over 25 years’ experience within animal health companies involved in the production of poultry and small- and large-animal vaccines. Trained in microbiology and molecular biology, he has held various positions in quality control, production, vaccine research and development and quality assurance.

Mr. Visanji is a board member of the British Association of Research Quality Assurance (BARQA) and chairman of the Publication Committee and a
founding member of Animal Health Committee. He is editor of *Quasar*, a quarterly magazine published by BARQA, and responsible for the BARQA Web site (www.barqa.com). He is also a member of a working party on harmonisation of quality standards.

Mr. Visanji is also a member of the *Biobits* editorial board. *Biobits* is a quarterly magazine published by the Institute of Biology. Recently, he was elected to the Institute of Biology's Agricultural and Science Committee (ASC).

CHAPTER AUTHORS

Alan Alexander

Alan Alexander (BVSc, MSc, MBA, MRCVS, MACVSc, FCIArb) has over 20 years of experience in the planning and conduct of animal trials to evaluate veterinary medicines. These trials have spanned food-producing and companion animals. In 1986, he was appointed the first director of the Animal Health Services Centre, Massey University, New Zealand. In 2000, Mr. Alexander was appointed head of the Veterinary Clinical Trials Unit at Inveresk Research Ltd. in Scotland.

Kim L. Ankenbauer-Bauer Perkins

Dr. Kim Ankenbauer-Perkins (BS, DVM) worked in both organic chemistry and human medicine research organisations prior to completing a veterinary degree in 1990. After three years of small and mixed animal veterinary practice, she joined the Animal Health Services Centre, Massey University, New Zealand, where she is currently a Senior Research Officer. She played an instrumental role in helping the Centre achieve GLP compliance in 1996, and she has over four years of experience as Study Director for numerous GCP and GLP studies.

Deborah Baker

Deborah Baker (BVetMed, MRCVS) began her professional career in mixed practice and worked for approximately 20 years for the former Hoechst Roussel Vet, and from 1985 as business development manager. She has a keen personal interest in horses and held a permit to train National Hunt (jump) racehorses between 1984 and 1996. Since 1997, she has been breeding National Hunt horses. Ms. Baker became the first female president of the British Equine Veterinary Association in 1993 and represented them for 11 years on the Industry Committee of the British Horse Racing Board. Ms. Baker is now employed by Intervet UK Limited, where she currently has responsibility for the development and marketing of equine products, such as wormers and vaccines, together with a wide range of companion animal pharmaceuticals.
Contributors

Jason Barley

Dr. Jason Barley (BVetMed, PhD, MRCVS) qualified in 1985 from the Royal Veterinary College in London and spent two years in mixed practice, before returning to RVC to complete his PhD thesis whilst working in the Department of Diagnostic Pathology. He joined Hoechst in 1989 and managed clinical development and veterinary services functions. His clinical development experience extends to work with immunologicals, pharmaceuticals and zootechnical additives in a range of companion animal and livestock species. Dr. Barley is currently veterinary clinical trials manager at Huntingdon Life Sciences, heading up its veterinary clinical development business in Europe. His species of special interest is sheep, especially setting up preventive medicine programs as part of overall flock health and welfare programs. Dr. Barley is an active member of the Sheep Veterinary Society.

Helen Biggadike

Helen Biggadike received a BSc (Hons) in agriculture science from the University of Reading 1984. She is experienced in designing and managing dairy cow fertility and mastitis research programmes. Previously employed by ADAS between 1984 and 1994 as a dairy consultant specialising in milk hygiene, cattle fertility and breeding. Ms. Biggadike is now a research scientist at ADAS and an investigator in multisite GCP studies.

Vanessa Carn

Dr. Vanessa Carn received a BVSc from Bristol University in 1987. Between 1987 and 1991, she worked in a mixed veterinary practice in East Anglia and Somerset and carried out commercial bovine embryo transfer. In 1991, Dr. Carn joined the Overseas Development Administration (ODA). As an associate professional officer, she worked in the Epidemiology Department at the Institute for Animal Health, Pirbright Laboratory, Kenya. Dr. Carn received her PhD from Reading University in 1994. The next few years were spent working for ODA at Pirbright and abroad, primarily on epidemiology and diagnosis of livestock diseases. She joined Hoechst Roussel Vet in January 1998 as clinical development manager.

John Carr

Dr. John Carr is a partner in the Garth Veterinary Group, N. Humberside. A seventeen-man veterinary practice, nine veterinarians, including three specialists, are dedicated to pigs. Dr. Carr received a PhD at Liverpool University in 1990 and a diploma in pig medicine in 1996. He has worked extensively throughout the world and has taught at universities in both the United Kingdom and the United States.
Zelda Carr

Zelda Carr is senior quality assurance manager for Powderject Pharmaceuticals. Prior to joining Powderject in September 2000, she held positions as quality records manager for Abbott Diagnostics and quality assurance manager for Hoechst Marion Roussel Drug Development. Ms. Carr has extensive experience in both pharmaceutical and veterinary GLP and GCP. Her degree is in applied biology, and she is a registered QA professional (GLP). Ms. Carr is an active member of BARQA, having served on the GLP and Education and Training Committees. She is currently a member of the Publications Committee.

Gillian Cowan

Gillian Cowan began her career in immunological research at the Lister Institute of Preventive Medicine in Elstree, Herts. She then spent two years in the pathology department of Bedford General Hospital before joining Hoechst UK in Milton Keynes to work on veterinary vaccine development. In 1981, she began registering veterinary medicines, veterinary vaccines and feed additives for Hoechst Animal Health. In 1992, she became responsible for quality assurance and registration in Milton Keynes, before being transferred to the headquarters in Wiesbaden, Germany, in 1996 as group manager of regulatory affairs biologicals for Hoechst Roussel Vet GmbH. Ms. Cowan is responsible for the global registration of vaccines and for mutual recognition procedures for vaccines and pharmaceuticals in the EU. In 2000, she became manager of Regulatory Affairs for Intervet International in the Netherlands and subsequently for Aquaculture Vaccines Limited in the United Kingdom.

Carolyn N. Dent

Carolyn Dent is Biological Services Manager at Intervet UK, Milton Keynes, and has 25 years of experience within the animal health industry. She has been responsible for conducting clinical trials according to GCP for the development of antiparasiticides, feed additives, pharmaceutical products and biological vaccines. As the Animal Care and Welfare Officer, she is responsible for the farm animal and laboratory animal facilities. The Biological Services Department is GLP compliant and is maintained according to GMP and ISO 9001 standards. The scientific procedures within the department are related to vaccine research and development, quality control and antiserum production.

Bridget Drew

Dr. Bridget Drew is Director for Dairy and Food Research for ADAS. She received a BSc in agriculture before joining ADAS in 1966. After several years in a dairy consultancy, where she undertook large-scale clinical trials, she was awarded a
PhD and moved to ADAS Bridgets Dairy Research as director. She was instrumental in ensuring that the Centre became a member of the UK GLP Compliance Programme in 1994. She is a fellow of the Institute of Biology and the Royal Agricultural Society.

George Gettinby

George Gettinby is Professor in the Department of Statistics and Modelling Science at the University of Strathclyde, Glasgow, Scotland. During the past 20 years, he has been an advisor to international agencies, industry and government bodies on the design and analysis of clinical trials. His research and teaching interests have focussed on the use of statistical and mathematical methods for the study of human and animal diseases. His industrial interests have centered on methods of data analysis associated with the research, development and manufacture of human and animal health, nutrition and medicinal products. In recent years, Professor Gettinby has taught many short courses for industry to promote the use of statistical methods for assessing the efficacy, safety and quality of products. He is a member of the Royal Statistical Society and the UK VPC Medicines Commission Committee, and he is an elected member of the Royal Society of Edinburgh.

Robert Grant

Dr. Robert Grant received an MS in animal science in 1970 and a PhD in animal nutrition in 1973 from Cornell University (Ithaca, N.Y.). Since 1973, Dr. Grant has been Senior Project Leader, Pharmaceuticals, at Intervet, Inc., in Flemington, NJ., where he is responsible for conducting the required research studies on new animal health products for submission to the Center of Veterinary Medicine. Four new compounds resulted from this research, along with numerous combination compounds. Most of his work has involved feed additives for the major food-producing species (cattle, pigs, broilers, and turkeys). Dr. Grant is a member of the American Society of Animal Science, the New York Academy of Sciences, the Poultry Science Association, and the American Registry of Professional Animal Scientists. He has over 40 publications to his credit as either lead author or coauthor. In 1995, Dr. Grant was awarded the Diplomate of the American College of Animal Nutrition. Dr. Grant is also a leader/trainer in various training courses, including GLP and project management, along with attending scientific meetings of various professional organizations.

Alan W. Hill

Dr. Alan Hill joined the Institute for Animal Health after receiving a PhD at the University of London in 1971. He initially carried out research in natural defence mechanisms in animals before spending 20 years investigating aspects of
epidemiology, pathogenesis and immunology associated with bovine mastitis. With over 70 research publications in the field, he was awarded a DSc (Medicine) in 1993 by the University of London in recognition of a sustained and distinguished contribution to the advancement of knowledge and learning in bovine mastitis. From 1993 to the present, Dr. Hill has been a consultant to the animal health industry.

Sue Lester

Sue Lester received a BSc (Hons) in chemistry and biology from London University in 1984 and the diploma in research quality assurance from Anglia Polytechnic University in 1997. For the past 16 years, she has worked in the animal health sector, including 6 years with the Veterinary Investigation Service (MAFF). Ms. Lester's experience covers analytical chemistry, quality control, manufacturing and, for the past 7 years, preclinical and clinical research quality assurance with Grampian Pharmaceuticals Ltd. In 1996, she became manager of Good Clinical Practice (Veterinary), following the successful implementation of the GCP guidelines into their clinical trial programme. Ms. Lester is currently director of a newly formed contract product development company, Triveritas, with prime responsibility for its quality assurance services. She is also a founding member of the BARQA Animal Health Committee, established in 1994 to further member understanding of GCP and to provide advice on matters of quality assurance within veterinary medicines research.

Alastair McLean

Alastair McLean is a science graduate of Glasgow University. For many years, he was a health and safety inspector with the Health and Safety Executive in a variety of posts in Glasgow, Edinburgh, Darlington, Chelmsford and London. He then joined the Institute of Aquaculture at the University of Stirling as quality assurance manager and was responsible for developing the procedures to enable the Institute to carry out research work on fish according to the GLP and GCP standards.

Martin Murphy

Dr. Martin Murphy graduated from University College Dublin in 1985 as a veterinary surgeon. After one year as a horse surgeon in the Small and Large Animal Clinics at University College Dublin, he joined the Department of Animal Husbandry and Production in 1986. In 1990 he was awarded a Master of Animal Science degree and in 1993 a PhD. Between 1990 and 1994, Dr. Murphy was engaged in a private veterinary practice. In 1994, he joined Biological Laboratories Europe Ltd. (BLE) as Director of Veterinary Trials. He has acted as a study director on GLP studies and as an investigator for GCP studies. Dr. Murphy is
responsible for training study directors and investigators and was actively involved in ensuring that the Veterinary Trials Division of BLE obtained its certificate of GLP compliance during inspections in 1996, 1998 and 1999.

John Murray

John Murray graduated from the University of Glasgow with a degree in agricultural chemistry and undertook a postgraduate research contract at the University of Dundee before joining Moredun Research Institute in 1986. After a six-year involvement with a collaborative group working on Pasteurella vaccines, he became laboratory manager with Moredun Scientific Limited, the commercial arm of Moredun. He was closely involved with the expansion of quality systems within Moredun to accommodate the commercial development of the group. Mr. Murray now manages the main contracts division of Moredun Scientific and has considerable experience in the conduct of efficacy and safety studies.

Rainer Muser

Dr. Rainer Muser graduated from the Tieraerztliche Fakultaet of Ludwig Maximilians Universitaet, Muenchen, Germany, in 1957 and earned a Dr. med. vet. Magna cum Laude in 1961 from the same institution. He was employed at the Tierhygienisches Institut, Freiburg, Germany, from 1958 to 1963 and Staatliches Tieraerztliches Untersuchungsamt, Heidelberg, Germany, from 1963 to 1969. From 1969 until his retirement in 1998, Dr. Muser was employed by Hoechst Roussel Vet and its predecessors. At the time of his retirement, Dr. Muser was the director of Development and Registration at Hoechst Roussel Vet USA. Since 1998, he has been a consultant.

Andrew R. Peters

Dr. Andrew Peters is director of clinical development in biologicals for Pfizer Global Research and Development. He graduated in veterinary science from the University of London in 1972 and received a PhD in animal physiology at Nottingham University in 1978. He has worked in academia, industry and the public sector, always with a special interest in livestock health and productivity. He has published approximately 100 scientific papers, is a regular contributor to scientific and industry meetings and is visiting professor at two English universities. He is co-author of the book Reproduction in Cattle and editor of Vaccines for Veterinary Applications.
Mike Proven

Dr. Mike Proven is a senior research scientist working for ADAS, a contract research organisation in the United Kingdom. He received a BSc (Hons) in agricultural science at the University of Edinburgh in 1980 and continued with postgraduate studies at the same institution, leading to a PhD in 1985. Dr. Proven joined ADAS in 1984, working in the Research Division as both a research scientist and a research team manager. While his work has covered a wide range of agricultural sectors, including sheep, cattle and combinable crops, he now specialises in safety and efficacy testing of veterinary pharmaceuticals in dairy cattle, working both to GCP and GLP standards.

Herman M. Schoenemann III

Dr. Herman Schoenemann III received a BSc in animal science from Texas A&M University in 1978. His graduate studies were in reproductive endocrinology, leading to an MSc from New Mexico State University in 1980 and a PhD from Washington State University in 1984. He completed several post-doctoral training fellowships (at Oklahoma State University, the Uniformed Services University of the Health Sciences, and the U.S. Department of Agriculture) before joining the U.S. Food and Drug Administration, Center for Veterinary Medicine, in 1990. At the CVM, he became a member of the ruminant drugs team in the Division of Biometrics and Production Drugs. In recent years, Dr. Schoenemann has focused his efforts on regulatory and policy issues, including the development of a standard of conduct for effectiveness (clinical) studies supporting the approval of animal drugs, the revision of the regulations permitting the investigational use of unapproved new animal drugs (the INAD regulations), and the implementation of the Animal Drug Availability Act of 1996. He has also represented the CVM as a member and later as topic leader of the Good Clinical Practices Working Group for the International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH).

Janet Stone

Janet Stone is a graduate member of the Institute of Biology. She received an MSc in marine and fisheries science from the University of Aberdeen. She has held research positions with commercial fish production companies and is currently a research fellow with the University of Stirling's Institute of Aquaculture based at their Marine Environmental Research Laboratory at Machrihanish, Campbeltown. She has extensive experience in the conduct of trials for the control of parasitic infections of fish.
Lucy Whitfield

Lucy Whitfield qualified as a veterinary surgeon from Cambridge University in 1992 and first worked as a locum for several months before joining a mixed practice in Somerset and then a small animal and pig practice in Bedford. In 1996, Ms. Whitfield joined Hoechst Roussel Vet as a veterinary advisor. She is responsible for postmarketing technical support and pharmacovigilance for their range of vaccines and pharmaceuticals. She acts as monitor for a variety of registration and postmarketing trials for new and existing products.

Susanne Zänker

Dr. Susanne Zänker received a Docteur en Médécine Vétérinaire with honours at the College of Veterinary Medicine, University of Liège in 1986. She has held various positions in European Federation for Animal Health (FEDESA), and her current position is technical and international affairs director at FEDESA in Brussels, Belgium. Dr. Zänker is a member of the EC DG SANCO and advisory committees dealing with matters on animal welfare; she is also involved in the organisation of many events, info-days and European and international conferences.
Introduction and Overview of Setting Up Studies to Good Clinical Practice

Nigel Dent

As one of the co-editors of this book, I thought it would be useful for the first chapter to not only introduce the authors and their chapters but give the reader an overview of the objectives that the book sets out to achieve. This chapter also summarises the rather complex picture of setting up clinical trials in the ever-changing environmental and regulatory field of veterinary clinical trials.

One of the key problems that all companies face in times of mergers, acquisitions or collaborative agreements, which seem to be buzz words in the industry at the moment, are a lack of resources, decreased time lines and an ever-shrinking market. It is strange that over the past years, terminology, such as the ambiguous Gulf War American phrase, “killed by friendly fire”, usually heralds disaster. Whatever the term is, it usually means that one party in the merger will experience downsizing and an increase in workload for the remaining people. We also have the ever-changing regulatory attitudes and the fact that there is still no clear delineation in many areas between the need to carry out a study according to Good Laboratory Practice (GLP) or Good Clinical Practice (GCP).
Although companies are frequently requested to consult with their local regulatory group, at the end of the day, the regulators do not always come up with a definite answer. It is ultimately the sponsor who has to make the decision on whether or not a study should be conducted according to the appropriate good practice and in turn hope that the initial decision bears fruit.

EVALUATION OF GOOD PRACTICES

From the point of view of GLP, this has become a standard set of tests which, in the animal health industry, has been quite transparent and easily implemented by all companies since the late 1970s. Turning, however, to the European Code of Conduct for GCP, it is being superseded by the Veterinary International Conference on Harmonisation (VICH) guidelines, a new and all embracing set of guidelines.

The problem for the animal health industry is similar to that currently faced by the human clinical trials industry, where we have a series of guidelines which enable the establishment of a good clinical study. In the animal health industry, there is not a directive to enforce appropriate guidelines or, for that matter, an inspectorate to examine the companies who are conducting clinical trials. Thus, it is generally up to the sponsor company to make a claim of GCP compliance.

It is hoped that early in the 21st century not only will the VICH document become the internationally accepted standard for conducting veterinary clinical trials according to GCP but also that a directive, certainly in the European Union (EU), will enhance the guideline and establish an inspectorate to ensure that the claim of compliance made by sponsors is backed up by a regulatory inspection.

BACKGROUND TO THE AUTHORS AND THE CHAPTERS

In putting together this volume, the co-editors have identified a need in the veterinary industry for this book. There are many people setting up clinical trials to varying standards and involving different species that pose different problems. Although there is a wealth of experience in the industry, this tends to be retained within companies and is not readily available as an off-the-shelf textbook.

All of the authors in this book have been approached for their knowledge and long-standing expertise of in their own particular area. The chapters themselves have been organised as a practical guide, and a large amount of the documentation is based on the authors' personal experiences, both pitfalls and benefits. Hopefully, the chapters will act as a guide to both the novice, giving areas to avoid, and to the established practitioner offering alternative ways of conducting studies but especially to ensure that these studies will meet the compliance required.
OBJECTIVE OF STUDIES

As you will see from the table of contents, we have tried to address the setting up of clinical studies in all of the major species where regulatory requirements insist that studies be conducted to GCP. Where "grey areas" arise, one can usually make a calculated guess as to whether these should be GCP or GLP studies.

Irrespective of the final good practice route chosen, I would suggest that any good practice is merely common sense, good science, and the use of qualified facilities along with good equipment. If these basic concepts are followed, then the good practice will automatically fall into place.

The general concept of conducting a study according to a good practice will never in any situation overcome the need for good science, a good study design and a careful and well-thought-out study plan. In my experience as a scientific consultant, I have seen a large amount of work conducted to the highest compliance of GCP, but the scientific integrity of the data is almost zero.

CONTROL OF STUDIES

We are all very keen to ensure that a study is conducted according to a good practice and that there is an independent review of that study by the quality assurance unit (QAU). The monitor is responsible for ensuring that the data are accurate and reflect both the study plan and the operating procedures that govern that study. In fact, all of these chapters will readily lead you to the fact that there is a need to conduct a study to a standard, which is GCP.

I would, however, suggest that one of the main considerations, prior to even reviewing whether or not the study plan complies with GCP, is to implement a very thorough and stringent quality control (QC) checking system at every available opportunity. A good QC system will include checking that the study plan meets the scientific objective and that the case report book is logical and assists the investigator in recording the site data. In addition, the staff and equipment are well trained and well maintained, respectively. Education in data recording to make sure that each entry is correct, calculations checked and the data subjected to a high level of quality control will go a long way to ensure that these data automatically comply with good practice. Anyone performing a QC check should take into account three essential questions:

1. What was done?
2. Who did it?
3. When was it done?

In other words, a clear description of the activity with a confirmatory signature and a date goes a long way to ensure that the data automatically become accepted for GCP.
Turning to the final report, we must bear in mind who the reader is. The reader of the document in most cases is a regulator sitting in isolation from the clinical study. Therefore, the report itself must be clear, concise, unambiguous and, above all, very accurate. This person's sole aim in life is to read as many documents as possible to get as many products to the market. If, in the first few pages, there are indications that the report shows poor quality or that little QC has been carried out, then the report itself will suffer from being put to the bottom of the pile to be dealt with later. Of all systems, the QC checking of the final report is of paramount importance.

REGULATION VERSUS COMPLIANCE

We must be very careful that we understand the two concepts described here—regulation and compliance. Regulation is governed by the Regulatory Affairs Department of a company and is reviewed by the local Veterinary Medicines Directorate (VMD). Here, we are looking to ensure that an Animal Test Certificate (ATC) is in place and that the study is allowed to progress. Similar but often different systems will be in place in different countries. The regulatory reviewer will look to see if the product is effective and safe and that there are sufficient data available to support the claim made by the sponsor to allow the reviewer to make an evaluation to give the product a licence or a marketing application.

Compliance, on the other hand, is merely a review by an independent body, such as a regulatory inspectorate, who may or may not be from the same regulatory department. Their aim in life is to ensure that the aspects of safety, animal welfare, insurance and ethics are all considered and that the GCP guidelines have been followed. Their prime concern is to see that the QC system has been put into place and that on every possible occasion QC checks have been carried out and the VICH guidelines have been followed.

STUDY CONDUCT

As the reader will be able to deduce from the various chapters, study conduct varies for different species and different applications. The main objective should, however, be good teamwork. The careful selection of the investigator and the site prior to starting the study, including discussion with all colleagues of the department to ensure that the study plan is of a good design and scientifically meets the objective of the study, is of paramount importance prior to the start of the study.

Adequate insurance is something that must be undertaken, especially where the study site may involve racehorses or thoroughbred horses, as can be seen from the chapter dealing with clinical trials in equine species. Here, one unexpected Adverse Event can lead to many thousands of pounds being required in compensation.
The informed consent process is also extremely important, especially when dealing with the companion animal owner. Here we are dealing with a totally different person from the farmer. An accurate description of the study that a companion animal will be included in and the written consent of the owner is of paramount importance. The sponsor and the investigator should confirm that the owner(s) has full knowledge of what will happen to their favourite animal.

For the conduct of an effective clinical study to any good practice, let alone GCP, every member of the team needs to know what is required, have regular communications, be well trained and ensure that everyone is conducting the study according to the agreed study plan.

FACTORS FOR SUCCESS

Without taking any more time to discuss the conduct of the clinical study, which is adequately covered in the following chapters, I would merely draw your attention to other aspects that need to be in place to allow a successful study to come to fruition. Leaving aside good study design, compliance and all the other aspects required by VICH guidelines, there are five key factors for success which also need to be addressed by the sponsor and the site personnel.

Commitment

It is no good having a very good study design and being well aware of the concepts of GCP if the whole team is not committed to both the study and the objective. One of the prime reasons for conducting clinical trials from the investigator’s point of view is to increase standing in the scientific community and to hopefully review new scientific methods and trends which will be of benefit to the animal health fraternity in general, especially the target species.

Resources

Resources covers many areas—people, animals, equipment and, to a certain extent, money. Again, each of the chapters delves into these particular areas for the specific animal species under discussion. I would merely draw your attention to the fact that a lack of sufficient resources in a timely manner can only lead to delays, and delays can prove costly in registration.

Qualified People

The qualification of an individual is often immaterial to one's expertise. I would, however, not draw the line at pure academic qualifications but take qualifications as the fitness of a person to do the task for which he or she has been selected. Certainly, we need the qualified investigator, possibly both academically
and scientifically, yet a large number of the team members will not be academically qualified. They must, however, be qualified by regular working practices and be fully aware of not only the conduct of the clinical study but also educated by the investigator and the sponsor in GCP. Employing a person who has no basic knowledge of GCP but is an expert in a particular field, such as milking the cows, is detrimental to the project if the person is unable to translate that activity into one which will comply with GCP. The qualification of the personnel, therefore, is through a very detailed training session by the sponsor, the monitor and the Principal Investigator in not only the study conduct but also the compliance with GCP.

Paperwork

One of the critical changes that we have seen over the past 20 years with good practice is the vast increase in paperwork. Now we have first and second drafts of the protocol to meet everybody's requirements, rather than discussing the study design before committing pen to paper. Following that, amendments are frequently drawn up where good study design has not been thought out from the beginning. Standard Operating Procedures (SOPs), recording books and forms, telephone records and monitoring reports—the list is endless. At each stage of every clinical trial, there are documents that must be completed, signed and archived. This in itself can become a time-consuming operation.

For all members involved in conducting a clinical study, one of the most important tasks is to ensure that they are aware of the aspect of recording and "paper movement". Without everyone comprehending why it is necessary to sign and date everything and to make the same entry onto two or even three forms will result in either it not being done or done incorrectly.

One of the critical tasks that must be established with every clinical study is traceability and accountability through the audit trail concept. In other words, if a deviation from the required practice is made, then this must be written down. The U.S. Food and Drug Administration (FDA) has a wonderful phrase: "If it is not written down, then it has not been done". This message in itself is one that must be transmitted to the entire clinical team to ensure that the study can, at any time in the foreseeable or not foreseeable future, be reconstructed.

Money

Naturally, all of the factors for success cost money. Without monetary resources, many of these factors will not be put into place; therefore the quality of the clinical study will diminish. A balance between cost and benefit must be maintained. To conduct a study to the standards of GCP and then claim that it increases costs by 30 percent indicates that there was a poor level of science present in the first place. Compliance will increase costs, but often these are inflated erroneously by management to purchase new machines or facilities with
the false statement that they are required for GCP. This naturally undermines the concept of GCP; just because it is old does not mean it must be replaced. *If it is fit for use, then it is satisfactory.*

CONCLUSIONS

I hope that this introductory chapter has helped paint the picture as to the whys and wherefores of conducting clinical studies. For your specific questions to be answered, the appropriate chapter should be turned to, where you will find a wealth of experience to assist you in setting up and conducting your clinical study.

My main hopes and aspirations for the future of the animal health industry as it moves forward to GCP in veterinary animal health clinical studies are that there will be an inspectorate to make sure that we all operate to the required standard and that a directive is produced to give some teeth to the inspectors to make sure that every sponsor is conducting the appropriate clinical trial with the appropriate quality standards. The VICH document as it stands is an acceptable and usable document. This must, however, be transmitted on a worldwide basis so that the global conduct of clinical trials meets the internationally accepted standard. Whether a study is performed in the United Kingdom or in Brazil, we know that the data have been collected satisfactorily and that both studies have been conducted to exactly the same standard.
22. AUDITING GCP TRIALS Facility Audit In-Life Phase
Audits Checking the Raw Data Auditing the Study Report
Conclusion

23. MULTISITE STUDIES Zelda Carr Lucy Whitfield Why
Perform Trials at Several Sites? Trial Documents
Recording Data lx 217 217 218 218 219 228 231 233
235 235 236 239 240 242 243 244 245 246 247
247 249 249 250 253 255 256 257 258 258 259

x Veterinary Clinical Trials from Concept to Completion
Identification of Suitable Sites Organisation of Sites
Trial Monitoring Long-Term Trials Laboratories Quality
Assurance Archiving Commercial Difficulties Shipment of
Investigational Product Conclusion

APPENDICES 1. Good Clinical Practice 2. The British

INDEX 260 260 262 263 263 264 264 265 266
269 269 297 301 305 307 311
Chapter 2. INTERNATIONAL HARMONIZATION AND THE CONDUCT OF CLINICAL STUDIES TO SUPPORT THE APPROVAL OF NEW ANIMAL DRUGS: THE U.S. PERSPECTIVE

5 Chapter 5. QUALITY ASSURANCE ON VETERINARY CLINICAL TRIALS IN THE UNITED STATES

Bell, R. 1992. Impure science, fraud, compromise and political influence in scientific re

CFR. 1998b. Code of Federal Regulations, Title 21, Part 58, Good Laboratory Practice for Non

CFR. 1998c. Code of Federal Regulations, Title 21, Parts 210 and 211: Current Good Man

FDA. 1992 CVM Guidelines and Guidance Documents, No. 58: Good target animal study

cvm/fda!TOCs/guideline.html

50 Veterinary Clinical Trials from Concept to Completion

FDA. 1999. International Cooperation on Harmonisation of

Food and Drug Administration, Center for Veterinary Medicine, Web site: http://www.fda.gov/cvm/default.html.

USEFUL ADDRESSES

Animal Health Institute, 1325 G Street, NW, Suite 700, Washington, DC 20005-3104; Telephone: 202-637-2440; Fax: 202-393-1662

Society for Quality Assurance, 515 King Street, Suite 420,
Chapter 6. SETTING UP GCP TRIALS IN FISH

Chapter 7. SETTING UP GCP TRIALS IN POULTRY

FDA. 1998. Adequate and well-controlled studies for investigational use and approval of new animal drugs. Federal Register 63 (March 5):10765-1082.

8 Chapter 8. SETTING UP GCP TRIALS IN COMPANION ANIMALS

VMD. 1995. Veterinary Medicines Directorate-Veterinary medicines: Licensed and unlicensed medicines: A note prepared by the Veterinary Medicines Directorate. The Veterinary Record (February 4).

Chapter 9. SETTING UP GCP TRIALS IN PIGS

Sloyan, M. 1998. Quality pig production for the global market. Proceeding of the 15th In

ternational Pig Veterinary Society Congress 1:289-292.

FURTHER READING

Cracknell, V. C. 1998. Good clinical practice: the role of the veterinary surgeon as inves
tigator. Proceeding of the International Pig Veterinary Society Congress 1:203-202
10 Chapter 10. SETTING UP GCP TRIALS IN CALVES

Chapter 12. Setting Up GCP Trials in Horses and Ponies

Chapter 13. GENETICALLY MODIFIED MICRO-ORGANISMS AND GCP STUDIES

Advisory Leaflet Number 4, Good Laboratory Practice and the role of the Study Director.

Chapter 17. THE GENERIC PROTOCOL

The protocol must be signed and distributed to all parties before the study starts. If further copies of the protocol are required, the original is drawn from the archive and the additional recipient's name included on the distribution list.

AMENDMENT TO THE FINAL PROTOCOL

Although the final protocol is intended to be the final document for the conduct of the study, some changes may have to be made as the study progresses. These changes will be planned, and there will be advanced notification of the proposed changes. All changes or modifications must be discussed and agreed on by both the investigator and the sponsor. An amendment is to be generated, providing reasons for the changes and what impact the changes will have on the study.

The amendment is to be signed by the investigator and sponsor and issued to all those on the protocol distribution list, notifying them of the change to the original protocol. An amendment must be distributed prior to the changes in the protocol taking effect. All amendments must be included in the final study report.

DEVIATION TO THE PROTOCOL DURING THE STUDY PERIOD

During the conduct of the study, a deviation to the protocol may occur. A deviation is a change to the protocol which could not be predicted, unlike an amendment.
ment which is planned. All deviations must be explained in writing and recorded by the investigator. All deviations which have an impact on the integrity of the study should be discussed in the final report.

ACKNOWLEDGEMENTS

I would like to thank all the investigators with whom I have had the privilege to work in conducting clinical studies to GCP. It is these investigators who have provided the material for this chapter. They have made it clear that if it is not in 182 Veterinary Clinical Trials from Concept to Completion the protocol, they will not do it and quite rightly so. However, on some occasions, if it is included in the protocol, it will still not be done. It is these investigators, who have not understood the protocols, who have taught me that the protocol must be perfectly clear with all details and instructions included, whom I thank.
Chapter 19. DATA, STATISTICAL ANALYSIS AND REPORTING FOR VETERINARY CLINICAL TRIALS

CVMP. 1998b. Conduct of bioequivalence studies in animals. London: Committee for Veterinary Medicinal Products.

