ASYMPTOTICS, NONPARAMETRICS, AND TIME SERIES

EDITED BY

SUBIR GHOSH

A Tribute to Madan Lal Puri
ASYMPTOTICS, NONPARAMETRICS, AND TIME SERIES
STATISTICS: Textbooks and Monographs

A Series Edited by

D. B. Owen, Founding Editor, 1972–1991

W. R. Schucany, Coordinating Editor
Department of Statistics
Southern Methodist University
Dallas, Texas

W. J. Kennedy, Associate Editor
for Statistical Computing
Iowa State University

A. M. Kshirsagar, Associate Editor
for Multivariate Analysis and for Experimental Design
University of Michigan

E. G. Schilling, Associate Editor
for Statistical Quality Control
Rochester Institute of Technology

1. The Generalized Jackknife Statistic, H. L. Gray and W. R. Schucany
2. Multivariate Analysis, Anant M. Kshirsagar
5. Design of Experiments: A Realistic Approach, Virgil L. Anderson and Robert A. McLean
6. Statistical and Mathematical Aspects of Pollution Problems, John W. Pratt
7. Introduction to Probability and Statistics (in two parts), Part I: Probability; Part II: Statistics, Narayan C. Girı
8. Statistical Theory of the Analysis of Experimental Designs, J. Ogawa
9. Statistical Techniques in Simulation (in two parts), Jack P. C. Kleijn
10. Data Quality Control and Editing, Joseph I. Naus
11. Cost of Living Index Numbers: Practice, Precision, and Theory, Kali S. Banerjee
13. The Search for Oil: Some Statistical Methods and Techniques, edited by D. B. Owen
14. Sample Size Choice: Charts for Experiments with Linear Models, Robert E. Odeh and Martin Fox
15. Statistical Methods for Engineers and Scientists, Robert M. Bethea, Benjamin S. Duran, and Thomas L. Boullion
16. Statistical Quality Control Methods, Irving W. Burr
18. Econometrics, Peter Schmidt
23. The Information in Contingency Tables, D. V. Gokhale and Solomon Kullback
25. Elementary Statistical Quality Control, Irving W. Burr
27. Basic Applied Statistics, B. L. Raktoe and J. J. Hubert
28. A Primer in Probability, Kathleen Subrahmaniam
30. Regression Methods: A Tool for Data Analysis, Rudolf J. Freund and Paul D. Minton
31. Randomization Tests, Eugene S. Edgington
32. Tables for Normal Tolerance Limits, Sampling Plans and Screening, Robert E. Odeh and D. B. Owen
33. Statistical Computing, William J. Kennedy, Jr., and James E. Gentle
34. Regression Analysis and Its Application: A Data-Oriented Approach, Richard F. Gunst and Robert L. Mason
35. Scientific Strategies to Save Your Life, I. D. J. Bross
36. Statistics in the Pharmaceutical Industry, edited by C. Ralph Buncher and Jia-Yeong Tsay
37. Sampling from a Finite Population, J. Hajek
38. Statistical Modeling Techniques, S. S. Shapiro and A. J. Gross
39. Statistical Theory and Inference in Research, T. A. Bancroft and C.-P. Han
40. Handbook of the Normal Distribution, Jagdish K. Patel and Campbell B. Read
41. Recent Advances in Regression Methods, Hrishikesh D. Vinod and Aman Ullah
42. Acceptance Sampling in Quality Control, Edward G. Schilling
43. The Randomized Clinical Trial and Therapeutic Decisions, edited by Niels Tygstrup, John M Lachin, and Erik Juhl
44. Regression Analysis of Survival Data in Cancer Chemotherapy, Walter H. Carter, Jr., Galen L. Wampler, and Donald M. Stablein
45. A Course in Linear Models, Anant M. Khirsagar
47. Statistical Analysis of DNA Sequence Data, edited by B. S. Weir
49. Attribute Sampling Plans, Tables of Tests and Confidence Limits for Proportions, Robert E. Odeh and D. B. Owen
51. Statistical Methods for Cancer Studies, edited by Richard G. Cornell
52. Practical Statistical Sampling for Auditors, Arthur J. Wilburn
53. Statistical Methods for Cancer Studies, edited by Edward J. Wegman and James G. Smith
55. Applied Factorial and Fractional Designs, Robert A. McLean and Virgil L. Anderson
56. Design of Experiments: Ranking and Selection, edited by Thomas J. Santner and Ajit C. Tamhane
58. Ensemble Modeling: Inference from Small-Scale Properties to Large-Scale Systems, Alan E. Gelfand and Crayton C. Walker
60. Bayesian Analysis of Linear Models, Lyle D. Broemeling
61. Methodological Issues for Health Care Surveys, Brenda Cox and Steven Cohen
63. Statpal: A Statistical Package for Microcomputers—PC-DOS Version for the IBM PC and Compatible, Bruce J. Chalmer and David G. Whitmore
64. Statpal: A Statistical Package for Microcomputers—Apple Version for the II, II+, and lia, David G. Whitmore and Bruce J. Chalmer
66. Design and Analysis of Experiments, Roger G. Petersen
67. Statistical Methods for Pharmaceutical Research Planning, Sten W. Bergman and John C. Gittins
68. Goodness-of-Fit Techniques, edited by Ralph B. D'Agostino and Michael A. Stephens
69. Statistical Methods in Discrimination Litigation, edited by D. H. Kaye and Mikel Aickin
70. Truncated and Censored Samples from Normal Populations, Helmut Schneider
71. Robust Inference, M. L. Tiku, W. Y. Tan, and N. Balakrishnan
73. Assignment Methods in Combinatorial Data Analysis, Lawrence J. Hubert
74. Econometrics and Structural Change. Lyle D. Broemeling and Hiroki Tsurumi
75. Multivariate Interpretation of Clinical Laboratory Data, Adelin Albert and Eugene K. Harris
76. Statistical Tools for Simulation Practitioners, Jack P. C. Kleijnen
78. A Folio of Distributions: A Collection of Theoretical Quantile-Quantile Plots, Edward B. Fowlkes
79. Applied Categorical Data Analysis, Daniel H. Freeman, Jr.
80. Seemingly Unrelated Regression Equations Models: Estimation and Inference, Virendra K. Srivastava and David E. A. Giles
81. Response Surfaces: Designs and Analyses, Andre I. Khuri and John A. Cornell
82. Nonlinear Parameter Estimation: An Integrated System in BASIC, John C. Nash and Mary Walker-Smith
84. Mixture Models: Inference and Applications to Clustering, Geoffrey J. McLachlan and Kaye E. Basford
85. Randomized Response: Theory and Techniques, Arijit Chaudhuri and Rahul Mukerjee
87. Parts per Million Values for Estimating Quality Levels, Robert E. Odeh and D. B. Owen
89. Properties of Estimators for the Gamma Distribution, K. O. Bowman and L. R. Shenton
90. Spline Smoothing and Nonparametric Regression, Randall L. Eubank
91. Linear Least Squares Computations, R. W. Farabrother
92. Exploring Statistics, Damaraju Raghavarao
93. Applied Time Series Analysis for Business and Economic Forecasting, Sufi M. Nazem
94. Bayesian Analysis of Time Series and Dynamic Models, edited by James C. Spall
95. The Inverse Gaussian Distribution: Theory, Methodology, and Applications, Raj S. Chhikara and J. Leroy Folks
96. Parameter Estimation in Reliability and Life Span Models, A. Clifford Cohen and Betty Jones Whitten
97. Pooled Cross-Sectional and Time Series Data Analysis, Terry E. Dielman
100. Nonlinear Lp-Norm Estimation, Rene Gonin and Arthur H. Money
101. Model Discrimination for Nonlinear Regression Models, Dale S. Borowiak
102. Applied Regression Analysis in Econometrics, Howard E. Doran
104. Statistical Methodology in the Pharmaceutical Sciences, Donald A. Berry
105. Experimental Design in Biotechnology, Perry D. Haaland
107. Handbook of Nonlinear Regression Models, David A. Ratkowsky
108. Robust Regression: Analysis and Applications, edited by Kenneth D. Lawrence and Jeffrey L. Arthur
109. Statistical Design and Analysis of Industrial Experiments, edited by Subir Ghosh
113. Engineering Quality by Design: Interpreting the Taguchi Approach, Thomas B. Barker
114. Survivorship Analysis for Clinical Studies, Eugene K. Harris and Adelin Albert
116. Stochastic Models of Carcinogenesis, Wai-Yuan Tan
118. Handbook of Sequential Analysis, B. K. Ghosh and P. K. Sen
119. Truncated and Censored Samples: Theory and Applications, A. Clifford Cohen
120. Survey Sampling Principles, E. K. Foreman
123. Handbook of the Logistic Distribution, edited by N. Balakrishnan
124. Fundamentals of Biostatistical Inference, Chap T. Le
125. Correspondence Analysis Handbook, J.-P. Benzécri
126. Quadratic Forms in Random Variables: Theory and Applications, A. M. Mathai and Serge B. Provost
127. Confidence Intervals on Variance Components, Richard K. Burdick and Franklin A. Graybill
129. Item Response Theory: Parameter Estimation Techniques, Frank B. Baker
130. Survey Sampling: Theory and Methods, Arijit Chaudhuri and Horst Stenger
132. Bivariate Discrete Distribution, Subrahmaniam Kocherlakota and Kathleen Kocherlakota
133. Design and Analysis of Bioavailability and Bioequivalence Studies, Shein-Chung Chow and Jen-pei Liu
134. Multiple Comparisons, Selection, and Applications in Biometry, edited by Fred M. Hoppe
Multivariate Analysis, Design of Experiments, and Survey Sampling, edited by Subir Ghosh
Statistical Process Monitoring and Control, S. Park and G. Vining
ASYMPTOTICS, NONPARAMETRICS, AND TIME SERIES

edited by

SUBIR GHOSH

University of California, Riverside
Riverside, California

A Tribute to Madan Lal Puri

Marcel Dekker, Inc.
New York • Basel
Madan Lal Puri
Asymptotic and nonparametric methods are widely used in statistics; time series is an important area of statistics. Many researchers have contributed and others are working to develop these subjects. As a result, we observe a profusion of research. This reference book is a collection of articles describing some of the recent developments and surveying some important topics. The book is a tribute to Professor Madan Lal Puri, who has contributed vigorously to asymptotic and nonparametric methods and their application in time series. This collection of articles is a present to Professor Puri for his 70th birthday to celebrate his contributions, leadership, and dedication to our profession. This is a collection not just by his friends but by the world leaders in their special research areas. The topics covered are broader than the title describes. Parametric, semiparametric, frequentist, bayesian, bootstrap, adaptive, univariate and multivariate methods, Markov chain models, and many others are also discussed in this book. All the articles have been refereed and are in general expository. The book should be of value to students, instructors, and researchers at colleges and universities, as well as in businesses, industries, and government organizations.
The following individuals were truly outstanding for their cooperation and help in reviewing the articles: Shun-ichi Amari, Gopal K. Basak, Jan Beran, Johanne F. Böhme, Dennis D. Boos, Jack Cuzick, Rainer Dahlhaus, Clive W. J. Granger, Cindy Greenwood, Wouter Den Hann, Nancy Heckman, Lajos Horvath, Irene Hueter, Harry Hurd, Wesley O. Johnson, Jerry H. Klotz, Eric D. Kolaczyk, Masao Kondo Johannes Ledolter, Ernst Linder, Olive Linton, Richard Lockhart, Bani K. Mallick, Marianthi Markatou, Michael A. Martin, Jean Meloche, Serena Ng, Dimitris N. Politis, Gregory C. Reinsel, Moshe Shaked, David Stoffer, Arnold J. Stromberg, Winfried Stute, Robert L. Taylor, Ram C. Tiwari, Stephen G. Walker, Edward C. Waymire, Granville T. Wilson, Wayne A. Woodward, Daming Xu, and G. Alastair Young. I am grateful to all our distinguished reviewers.

My deep appreciation and heartfelt thanks go to our renowned contributors, who I hope forgive me for not telling them in advance about some details regarding this book. But then, a surprise for Professor Madan Lal Puri and our contributors will uplift our spirits and stimulate us to contribute more to our society.

My sincere thanks go to Russell Dekker, Maria Allegra, and others at Marcel Dekker, Inc. I would like to thank my wife, Susnata, and our daughter, Malancha, for their support and understanding of my efforts in completing this project.

Subir Ghosh
Contents

Preface
Contributors
Madan Lal Puri: Life and Contributions of a Mathematical Statistician xv
Subir Ghosh and George G. Rouss
ta

1. Some Examples of Empirical Fourier Analysis in Scientific Problems
 David R. Brillinger 1

2. Modeling and Inference for Periodically Correlated Time Series
 Robert B. Lund and Ishwar V. Basawa 37

3. Modeling Time Series of Count Data
 Richard A. Davis, William T. M. Dunsmaur, and Ying Wang 63

4. Seasonal and Cyclical Long Memory
 Josu Arteche and Peter M. Robinson 115

 Dag Tjostheim 149

v
xi
xv

vii
 R. J. Bhansali

7. Nonlinear Estimation for Time Series Observed on Arrays
 Robert H. Shumway, Sung-Eun Kim, and Robert R. Blandford

8. Some Contributions to Multivariate Nonlinear Time Series and to Bilinear Models
 T. Subba Rao and W. K. Wong

 Marc Hallin and Bas J. M. Werker

10. Statistical Analysis Based on Functionals of Nonparametric Spectral Density Estimators
 Masanobu Taniguchi

11. Efficient Estimation in a Semiparametric Additive Regression Model with ARMA Errors
 Anton Schick

 Wolfgang Wefelmeyer

 B. L. S. Prakasa Rao

14. Minimum Distance and Nonparametric Dispersion Functions
 Ömer Öztürk, Thomas P. Hettmansperger, and Jürg Häusler

15. Estimators of Changes
 J. Antoch and M. Hušková

16. On Inverse Estimation
 Arnoud C. M. van Rooij and Frits H. Ruymgaart

17. Approaches for Semiparametric Bayesian Regression
 Alan E. Gelfand

18. Consistency Issues in Bayesian Nonparametrics
 S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi

19. Breakdown Theory for Estimators Based on Bootstrap and Other Resampling Schemes
 Gutti Jogesh Babu
Contents

 S. N. Lahiri
 683

21. Convergence to Equilibrium of Random Dynamical Systems Generated by IID Monotone Maps, with Applications to Economics
 Rabi Bhattacharya and Mukul Majumdar
 713

22. Chi-Squared Tests of Goodness-of-Fit for Dependent Observations
 Kamal C. Chanda
 743

23. Positive and Negative Dependence with Some Statistical Applications
 George G. Roussas
 757

24. Second-Order Information Loss Due to Nuisance Parameters: A Simple Measure
 Bruce G. Lindsay and Richard Waterman
 789

Appendix: The Publications of Madan Lal Puri
 811

Index
 829
Contributors

J. Antoch Department of Statistics, Charles University, Prague, Czech Republic

Josu Arteche Department of Econometrics, University of the Basque Country, Bilbao, Spain

Gutti Jogesh Babu Department of Statistics, Pennsylvania State University, University Park, Pennsylvania

Ishwar V. Basawa Department of Statistics, The University of Georgia, Athens, Georgia

R. J. Bhansali Department of Mathematical Sciences, University of Liverpool, Liverpool, England

Rabi Bhattacharya Department of Mathematics, Indiana University, Bloomington, Indiana

Robert R. Blandford Center for Monitoring Research, Arlington, Virginia
Contributors

David R. Brillinger Department of Statistics, University of California, Berkeley, California

Kamal C. Chanda Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas

Richard A. Davis Department of Statistics, Colorado State University, Fort Collins, Colorado

William T. M. Dunsmuir School of Mathematics, University of New South Wales, Sydney, Australia

Alan E. Gelfand Department of Statistics, University of Connecticut, Storrs, Connecticut

S. Ghosal Faculty of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

J. K. Ghosh Indian Statistical Institute, Calcutta, India

Marc Hallin Institute of Statistics and Operations Research, European Center for Advanced Research in Economics, and Department of Mathematics, Université Libre de Bruxelles, Brussels, Belgium

T. P. Hettmansperger Department of Statistics, Pennsylvania State University, University Park, Pennsylvania

M. Hušková Department of Statistics, Charles University, Prague, Czech Republic

Jürg Hüsler Department of Mathematical Statistics, University of Bern, Bern, Switzerland

Sung-Eun Kim Department of Civil and Environmental Engineering, University of California, Davis, California

S. N. Lahiri Department of Statistics, Iowa State University, Ames, Iowa

Bruce G. Lindsay Department of Statistics, Pennsylvania State University, University Park, Pennsylvania

Robert B. Lund Department of Statistics, The University of Georgia, Athens, Georgia

Mukul Majumdar Department of Economics, Cornell University, Ithaca, New York

Ömer Öztürk Department of Statistics, The Ohio State University, Marion, Ohio
Contributors

B. L. S. Prakasa Rao Indian Statistical Institute, New Delhi, India

R. V. Ramamoorthi Department of Statistics and Probability, Michigan State University, East Lansing, Michigan

T. Subba Rao Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester, England

Peter M. Robinson Department of Economics, London School of Economics and Political Science, London, England

George G. Roussas Division of Statistics, University of California, Davis, California

Frits H. Ruymgaart Department of Mathematical Statistics, Texas Tech University, Lubbock, Texas

Anton Schick Department of Mathematical Sciences, Binghamton University, Binghamton, New York

Robert H. Shumway Division of Statistics, University of California, Davis, California

Masanobu Taniguchi Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Japan

Dag Tjøstheim Department of Mathematics, University of Bergen, Bergen, Norway

Arnoud C. M. van Rooij Department of Mathematics, University of Nijmegen, Nijmegen, The Netherlands

Ying Wang Department of Statistics, Colorado State University, Fort Collins, Colorado

Richard Waterman Department of Statistics, University of Pennsylvania, Philadelphia, Pennsylvania

Wolfgang Wefelmeyer Department of Mathematics, University of GH Siegen, Siegen, Germany

Bas J. M. Werker Institute of Statistics, Université Libre de Bruxelles Brussels, Belgium

W. K. Wong* Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester, England

*Current affiliation: University of Stirling, Scotland
Madan Lal Puri: Life and Contributions of a Mathematical Statistician

Madan Lal Puri was born in Sialkot (then in India, now in Pakistan) on February 20, 1929. In 1947, when India gained her independence and Pakistan was created, his family migrated to Delhi as refugees. He received a B.A. degree in 1948 and an M.A. degree in 1950, both in mathematics, from Panjab University in India. From January 1951 to August 1957, he served as a Lecturer in Mathematics in different colleges of Panjab University.

In September 1957, he came to the United States as an instructor and a graduate student in mathematics at the University of Colorado in Boulder. In September 1958, he moved to the University of California at Berkeley as a research assistant in the Department of Statistics and then received his Ph.D. in statistics in 1962. His dissertation was in the area of nonparametric inference under the guidance of Professor Erich L. Lehmann. As a world center of statistics in the 1950s and 1960s University of California at Berkeley hosted a number of world renowned experts in probability and statis-

The publications of Madan Lal Puri are given in the Appendix.
Madan Lal Puri

Statistics: Cox, Cramer, Doob, Feller, Hoeffding, Hotelling, Kiefer, Robbins, Kendall, Rao, and Wolfowitz, to name only a few. The list of faculty members during this golden period includes, among others, the prominent statisticians Blackwell, LeCam, Lehman, Loeve, Neyman, and Scheffe. Madan received his statistics education in this exciting environment.

In 1962, Dr. Madan L. Puri joined the Courant Institute of Mathematical Sciences at New York University as an Assistant Professor and became an Associate Professor in 1965. He joined Indiana University at Bloomington in 1968 as a full Professor of Mathematics and remains there to this day.

Professor Puri is one of the most versatile and prolific researchers in mathematical statistics. His research areas include nonparametric statistics, order statistics, limit theory under mixing, time series, splines, tests of normality, generalized inverses of matrices and related topics, stochastic processes, statistics of directional data, random sets, fuzzy sets and fuzzy measures, among others. His fundamental contributions in developing rank-based methods and precise evaluation of the standard procedures, asymptotic expansions of distributions of rank statistics, as well as large deviation results concerning them, span various areas, such as analysis of variance, analysis of covariance, multivariate analysis, and time series. His in-depth analysis resulted in many pioneering research contributions in prominent journals which have substantial impact on current research.

Professor Puri has done joint work with many researchers from different countries. His numerous joint contributions with Professor P. K. Sen in the 1960s and 1970s on rank-based procedures and their asymptotic properties are greatly valued in our profession. Researchers in many other disciplines use these statistical procedures in their everyday work. This joint collaboration resulted in two advanced books, *Nonparametric Methods in Multivariate Analysis of Variance* and *Nonparametric Methods in General Linear Models*, which are still the leading books on these topics. In the 1980s and 1990s, his pioneering contributions with Professor M. Hallin resulted in new rank-based methods for time series analysis. His many joint contributions on convergence rates with Professors R. N. Bhattacharya, M. Harel, S. Ralescu, M. Seoh, and T. J. Wu; on generalized inverses with Professor S. K. Mitra; on fuzzy sets and measures with Professor D. A. Ralescu; on invariance principles for stochastic processes with Professors M. Denker, G. Haiman, and H. Harel; and on rank-based methods in the analysis of designed experiments with Professor E. Brunner are just a few of his many such accomplishments.

Until the early 1980s the theory and practice of rank-based inference was essentially limited to analysis with independent observations. This limitation on independent or, at least, exchangeable observations was more or less inherent in rank-based inference. The papers published between 1985 and
1994 by Hallin and Puri, as well as Hallin, Ingenbleek, and Puri, present detailed rank-based methods for the analysis of the popular autoregressive-moving average (ARMA) and other models. This much-needed development was made possible through the use of a new type of rank statistics, called the \textit{serial linear rank statistics}, introduced by Hallin and Puri.

Professor Puri was the Alexander von Humboldt Guest Professor at the University of Göttingen in West Germany during 1974–75 and Guest Professor at many other universities in Germany, with German National Science Foundation grants. He was a Distinguished Visitor at the London School of Economics and Political Science, and Visiting Professor at the University of Auckland in New Zealand, the Universities of Bern and Basel in Switzerland, the University of New South Wales in Australia, the University of Goteborg and Chalmers University of Technology in Sweden, and Université des Sciences et Technologies de Lille France. He was invited to lecture at the Japanese Society for the Promotion of Science in 1971. He has been an invited speaker as well as plenary speaker at many international conferences all over the world.

Professor Puri has received numerous honors and awards. He is an elected member of the International Statistical Institute, and a Fellow of the Institute of Mathematical Statistics, the American Statistical Association, and the Royal Statistical Society. In 1975, he was honored with the D.Sc. degree from Panjab University in India. He twice received the Senior U.S. Scientist Award from the Alexander von Humboldt Foundation, in 1974 and 1983. In 1974, he was honored by the government of the Federal Republic of Germany, “In recognition of past achievements in research and teaching.” In 1984, he received the best paper award from the Seventh European Meeting on Cybernetics and Systems Research, Vienna, Austria. In 1991, he received the Rothrock Faculty Teaching Award in recognition of outstanding teaching in the Department of Mathematics of Indiana University. He was ranked as the fourth most prolific author in 1997 and the ninth most in 1993 in top statistical journals in the world.

Professor Puri served on organizing committees of many international conferences in addition to those of the Institute of Mathematical Statistics and the American Statistical Association. He also served as Editor-in-Chief of the \textit{Journal of Statistical Planning and Inference} during 1984–1988.

Professor Puri has directed 16 Ph.D. dissertations. Most of his former Ph.D. students are in research and teaching positions at good universities. A few of them hold responsible positions in industry.

Professor Puri is truly an international academician and a peripatetic scholar who works with missionary zeal. Many scientists from different countries visit him regularly and do research with him while staying at his home. He is a caring colleague with warmest affection, an international host,
a persuasive communicator, a dedicated as well as an outstanding teacher, and a versatile statistician whose work continues to inspire the scientific community.

With great pleasure, pride, and admiration, we dedicate this book in honor of Professor Madan Lal Puri on his 70th birthday. The age of seventy is a time of liberation, a time to realize that there is more to do, more to see, and more reasons to be around for the people who really appreciate you. Madan, our best wishes to you on this happy occasion and in years to come.

Subir Ghosh
George G. Roussas
1

Some Examples of Empirical Fourier Analysis in Scientific Problems

DAVID R. BRILLINGER University of California, Berkeley, California

"One can FT anything—often meaningfully."

J. W. Tukey

1. INTRODUCTION

As a concept and as a tool, the Fourier transform is pervasive in applied mathematics, computing, mathematics, probability and statistics as well as in substantive sciences such as chemistry, geophysics and physics. This chapter presents a review of such applications and then four personal analyses of scientific data based on Fourier transforms. Specific points made include: Fourier analysis is conceptually simple, its concepts often have direct physical interpretations, useful statistical properties are available, and there are various interesting connections between the mathematical and physical concepts.

By Fourier analysis is meant the study of spaces and functions, making substantial use of sine and cosine functions. The subject has a long and glorious history. In particular, fundamental work has been carried out by both mathematicians and applied scientists. Fourier analysis remains of interest to mathematicians because generalizations seem inexhaustible and because there are continual surprises. Classic works by mathematicians
include: Wiener (1933), Bochner (1959, 1960) and Zygmund (1968). These particular authors are concerned with functions on the line or on a general Euclidian space. Works on extensions to general groups include: Loomis (1953), Rudin (1962), Hewitt and Ross (1963), Kadznelson (1976). More recent books are Terras (1988) and Köner (1989), the former particularly addressing the nonabelian case, the latter presenting a variety of historical examples and essays on specific topics.

In contrast, the Fourier transform is of interest to statisticians because it proves inordinately useful in the analysis of data and eases the development of various theoretical results. Noteworthy contributions to statistics have been made by Slutsky (1934), Cramér (1942), Good (1958), Yaglom (1961), Tukey (1963), Hannan (1965, 1966), Priestley (1965), Bloomfield (1976), Diaconis (1988, 1989). Slutsky developed some of the statistical properties of the Fourier transform of a stretch of time series values. Cramér set down a Fourier representation (see Sec. 4.1) for stationary processes. The representation admitted many extensions and made transparent the effect of a variety of operations on processes. Good and Tukey indicated how the transform could be computed recursively and hence quickly in certain circumstances. Yaglom extended the domain of application to processes defined on compact and locally compact groups. Hannan considered problems for other groups than Yaglom and presented material relevant to practical applications. Priestley provided a frequency domain representation to describe nonstationary processes. Bloomfield made complicated results available to a bread audience. Diaconis considered symmetric and permutation groups and the analysis of ordered data.

Particular uses of the empirical Fourier transform include: the development of estimates of finite dimensional parameters appearing in time series models (Whittle (1952), Dzhaparidze (1986), Feuerverger (1990)), the assessment of goodness of fit of models (Feigin and Heathcote (1976)), and the deconvolution of random measurements (Fan (1992)). Fourier analysis has a special place amongst the tools of statistics for the concepts often have their own physical existence.

There are special computational, mathematical and statistical properties and surprises associated with the Fourier transform. These include: the central limit theorems for the stationary case with approximate independence at particular frequencies, the existence of fast Fourier transforms, (Good (1958), Tukey (1963), Cooley and Tukey (1965), Rockmore (1990)) the need for convergence factors, the ideas of aliasing.

Section 2 concerns some particular physical situations. Section 3 contains pertinent background from analysis. Section 4 contains stochastic background. Section 5 presents analyses of four data sets from the natural sciences and the author's experience. The examples highlight
Examples of Empirical Fourier Analysis

approximation, shrinkage estimation, the method of stationary phase, central limit theorems and uncertainty estimation. The first example, concerning crystallographic data, involves the empirical representation of a basic function on the plane by an expansion in sines and cosines. This makes sense because of periodicities inherent in the crystal structure. The example also involves shrinkage of the coefficients of the expansion in order to obtain improved estimates. The second analysis is of a record of an earthquake that took place in Siberia as recorded at Uppsala, Sweden. The oscillatory character of the data may be understood heuristically via the method of stationary phase, to be described below. A model of the transmission medium is constructed and model assessment carried out by a sliding or dynamic Fourier analysis. This last may be viewed as a form of wavelet analysis. The third analysis, concerned with nuclear magnetic resonance (NMR) spectroscopy, employs Fourier analysis to obtain physical insight into the behavior of an input-output system, and then makes use of cross-spectral analysis to estimate the transfer function of the system. The periodogram of the residuals is employed to assess the fit. The final example involves both wavelet and Fourier analysis. It is concerned with the question of whether a microtubule moves steadily or via jumps. The Fourier analysis is employed in this case to obtain uncertainty estimates in the presence of stationary noise. Section 6 contains conclusions and indicates open problems.

2. SOME PHYSICAL EXAMPLES OF FOURIER ANALYSIS

Cycles, periods, and resonances have long been noted in scientific discussions of astronomy, vibrations, oceanography, sound, light and crystallography amongst other fields. In technology oscillations occur often for example in telephone, radio, TV and laser engineering. Natural operations occur commonly that correspond with linear and time invariant systems as defined in Section 3 below. These are the eigenoperations of Fourier analysis.

Fourier analysis is sometimes tied specifically to the physics of a problem. For example Bazin et al. (1986) physically demonstrate the operations/concepts of translation, linearity, similarity, convolution and Parseval's theorem for the Fourier transform via diffraction experiments with laser light. The Fourier transform here is formed via a lens. See Goodman (1968) Shankar et al. (1982), Glaeser (1985) for a discussion of the optics involved.

An important example arises in radio astronomy. Suppose there is an array of receivers. Suppose there is a small incoherent source, at great distance, producing a plane travelling wave. If \(Y(x,y,t) \) denotes the radio field measurement made at time \(t \) on a telescope located at position \((x,y) \), then
References

log1

AN ESTIMATING EQUATION APPROACH

Pagano, M. On periodic and multiple autoregressions, Ann.

OBSERVATION DRIVEN MODELS

Schwartz, J., C. Spix and G. Touloumis, Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions, J. Epidemiology and Community Health, 50 (Supplement), S33-S1 (1996).

Beran, J., On a class of M estimators for gaussian long memory models, Biometrika, 81, 4:755766 (1994b).

Giraitis, L. and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and

Osborn, D. R., The implications of periodically varying coefficients for seasonal time series processes, J.

Brock, W. A., W. D. Dechert and J. A. S

Brock, W. A., D. A. Hsieh and B. LeBaron, Nonlinear Dynamics, Cha

Hengartner, N. W., Rate optimal estimation of additive regression via the integration method in the presence of many covariates. Preprint, Department of Statistics, Yale University, New Haven CT, 1996.

Akaike, H., Information theory and an extension of the
maximum likelihood principle in 2nd International Symp. on
inference (B. N. Petrov and F. Csaki, eds.). Akademia

Ansley, C. F. and P. Newbold, On the bias in the estimates
of forecast mean square error. J. Amer. Statist. Assoc.,

Berk, K. N., Consistent autoregressive spectral estimate.
Asymptotic properties of the Wiener-Kolmogorov predictor-I,

Bhansali, R. J., Effects of not knowing the order of an
autoregressive process on the mean squared error of
prediction-I, J. Amer. Statist. Assoc., 76: 588-597

Bhansali, R. J., The inverse partial correlation function
of a time series and its applications, J. Mult. Analysis,

Bhansali, R. J., Estimation of the moving average
representation of a stationary process by autoregressive

Bhansali, R. J., Estimation of the prediction error
variance and an R2 measure by autoregressive model

Bhansali, R. J., Order selection for linear time series
models: a review, In Developments in Time Series Analysis
50-66.

Bhansali, R. J., Asymptotically efficient autoregressive

Bhansali, R. J., Direct autoregressive predictors for
multistep prediction: order selection and performance
relative to the plug in predictors, Statistim Sinica,

Kabaila, P. V., Parameter values of ARMA models minimizing the one-step ahead prediction error when the true system is not in the model set, J. Appl. Prob., 20:405-408 (1983).

Hinich, M. J. and P. Shaman, Parameter estimation for an R-dimensional plane wave observed with additive

Washington, DC, 1982
\[X, = A X \]

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54: 426-482.

Schick, A. (1987): A note on the construction of

Akritas, M. G. and Johnson, R. A. (1982). Efficiencies of tests and es-
imators for order autoregressive processes when the error distribution

Anderson, T. W. (1955). The integral of an asymmetric unimodal func-

Bibby, N. and Sørensen, M. (1996). Nonparametric estimation for dis-

Bickel, P. J. (1993). Estimation in semiparametric models. In: Multi-

Diirr, D. and Goldstein, S. (1986). Remarks on the

Wefelmeyer, W. (1994). An efficient estimator for the expectation of a bounded function under the residual

for Markov chains. In: Selected Proceedings of the
Symposium on Estimating Functions (I. V. Basawa, V. P.
Godambe and R. L. Taylor, eds.) 149-173, IMS Lecture
Notes-Monograph Series 32, IMS, Hayward.

models for time series: a quasi-likelihood approach.
Biometrics 44:1019-1031.
.f. Suppose.

Genon-Catalot, V., (1990) Maximum contrast estimation for

Kallen berg, P. J. M. (1979) Branching Processes H'ith

Masry, E. (1997) Multivariate probability density

van Eden, C. (1972). An analogue, for signed rank statistics, of Jureckova’s asymptotic linearity theorem

of Theorem 2.4. The proof follows the lines of the proof of

Hinkley D. V.: Inference about the change-point in a sequence of random variables, Biometrika 57: 1970, 1-17.

Jaruskova D.: Some problems with application of change-point detection methods to environmental data, Environmetrics, 8, 1997, 469-483.

Siegmund D.: Confidence sets in change-point problems,

Worsley K. J.: Confidence regions and tests for a change-point in a sequence of exponential family random variables, Biometrika 73: 1986, 91-104.

\[r \leq A, \text{ for some } 0 < A = A(a) < \]

Zhang, C.-H. (1990). Fourier methods for estimating mixing...
of the event for the \(i \)th individual in the interval

Bayesian nonparametric and covariate analysis of failure time data. Tech. Rpt., Department of Mathematics, Imperial College, London.

P'' PT(T, and given P if XXi•• Xare iid
P, then the poster-

application to Bayesian non-parametric problems. Ann.
Statist. 2: 1152-1174.

consistency of posterior distributions in non parametric

distribution when the model is incorrect. Ann. Math.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson
distributions via Polya urn schemes. Ann. Statist. 1:
353-355.

Blum, J. and Susarla, V. (1977). On the posterior
distribution of a Dirichlet process given randomly right
censored observations. Stoch. Processes Appl. 5:207-211.

data from a unimodal density. Statist. Probab. Lett. 14:
195-199.

error terms that have symmetric unimodal densities. J.
Nonparametric Statist. 4:335-348.

17: 1550-1566.

Dalal, S. R. (1979). Dirichlet invariant processes and
application to nonparametric estimation of symmetric

Probab. 3:611-626.

of Bayes estimates (with discussion). Ann. Statist. 14:
1-67.

Dubins, L. E. and Freedman, D. A. Invariant probabilities

22 Chi-Squared Tests of Goodness-of-Fit
For Dependent Observations

Bartlett, M. S. The frequency goodness-of-fit test for
probability chains. Proc. Camb. Phil. Soc. 47: 86-95,
1951.

Bhaskara Rao, M., Subba Rao T., and Walker, A. M. On the
existence of some bilinear time series models. J. Time.

Billingsley, Patrick. Statistical Inference for Markov
Processes. Chicago and London: The University of Chicago

Chanda, Kamal C. Chi-square goodness-of-fit tests based on
dependent observations. In: C. Taillie et al. (eds).
Statistical Distributions in Scientific Work, 5.
35-49.

Chanda, Kamal C. Stationarity and central limit theorem
associated with bilinear time series models. J. Time Ser.

Chung, Kai Lai. A Course on Probability Theory. (2nd

Gasser, T. Goodness-of-fit tests for correlated data.

Gastwirth, J. L. and Rubin, H. The asymptotic distribution

Gieser, Leon J. and Moore, David S. The effect of
dependence on chisquared and empiric distribution tests of

Goodman, L. A. Asymptotic distributions of "psi-squared"

Grahn, T. A conditional least squares approach to bilinear
time series estimation. J. Time Ser. Anal. 16:509-529,
1995.

Neuman, C. M. Normal fluctuations and the FKG

Roussas, G. G. Nonparametric estimation of the transition

