Clinical Pain Management

Practice and Procedures
Clinical Pain Management

Practice and Procedures

2nd edition

Edited by

Harald Breivik MD DMSc FRCA
Professor, University of Oslo and Section of Anaesthesiology and Intensive Care Medicine
Rikshospitalet University Hospital
Oslo, Norway

William I Campbell MD PhD FRCA FFARCSI DPMedCARCSI
Consultant in Anaesthesia and Pain Medicine
The Ulster Hospital
Belfast, UK

Michael K Nicholas PhD
Director, ADAPT Pain Management Programme, Pain Management Research Institute
University of Sydney at Royal North Shore Hospital
Sydney, Australia
Contents

Contributors ix
Series preface xiii
Introduction to Clinical Pain Management: Practice and Procedures xv
How to use this book xvii
Abbreviations xix

PART I PRINCIPLES OF MEASUREMENT AND DIAGNOSIS 1

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History-taking and examination of the patient with chronic pain</td>
<td>Paul R Nandi and Toby Newton-John</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Practical methods for pain intensity measurements</td>
<td>William I Campbell and Kevin E Vowles</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Selecting and applying pain measures</td>
<td>Johannes Van Der Merwe and Amanda C de C Williams</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Sensory testing and clinical neurophysiology</td>
<td>Ellen Jørum and Lars Arendt-Nielsen</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Pharmacological diagnostic tests</td>
<td>Andrew P Baranowski and Natasha C Curran</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>The role of biochemistry and serology in pain diagnosis</td>
<td>Hilde Berner Hammer</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>Diagnostic algorithms for painful peripheral neuropathy</td>
<td>David Bennett</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Novel imaging techniques</td>
<td>Michael Lee and Irene Tracey</td>
<td>83</td>
</tr>
</tbody>
</table>

PART II THERAPEUTIC PROTOCOLS 93

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>After assessment, then what? Integrating findings for successful case formulation and treatment tailoring</td>
<td>Steven J Linton and Michael K Nicholas</td>
<td>95</td>
</tr>
</tbody>
</table>

Section A: Pharmacological therapies 107

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Treatment protocols for opioids in chronic nonmalignant pain</td>
<td>Harald Breivik</td>
<td>109</td>
</tr>
<tr>
<td>11</td>
<td>Subcutaneous drug infusion protocols for the control of cancer pain</td>
<td>Humaira Jamal and Ivan F Trotman</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>Antiepileptics, antidepressants, and local anesthetic drugs</td>
<td>Harald Breivik and Andrew SC Rice</td>
<td>134</td>
</tr>
</tbody>
</table>
Section B: Psychological techniques

13 Self-regulation skills training for adults, including relaxation
 David Spiegel

14 Biofeedback
 Frank Andrasik and Herta Flor

15 Contextual cognitive-behavioral therapy
 Lance M McCracken

16 Graded exposure in vivo for pain-related fear
 Johan WS Vlaeyen, Jeroen De Jong, Peter HTG Heuts, and Geert Crombez

Section C: Physical therapy and rehabilitation protocols

17 Transcutaneous electrical nerve stimulation
 Timothy P Nash

18 Acupuncture
 Mike Cummings

19 Physiotherapy
 Harriët M Wittink and Jeanine A Verbunt

20 Manual medicine
 Steve Robson and Louis Gifford

Section D: Interventional procedures

21 Introduction to interventional procedures
 William I Campbell and Harald Breivik

22 Psychological aspects of preparation for painful procedures
 Rachael Powell and Marie Johnston

23 Peripheral nerve blocks: practical aspects
 David Hill

24 Intravenous and subcutaneous patient-controlled analgesia
 Stephan Locher and Michele Curatolo

25 Alternative opioid patient-controlled analgesia delivery systems – transcutaneous, nasal, and others
 Gunnvald Kvarstein

26 Epidural analgesia for acute pain after surgery and during labor, including patient-controlled epidural analgesia
 Harald Breivik

27 Sympathetic blocks
 Harald Breivik

28 Neurolytic blocks
 William I Campbell

29 Intra-articular and local soft-tissue injections
 Michael Shipley and Vanessa Morris

30 Facet (zygapophyseal) joint injections and medial branch blocks
 Ron Cooper

31 Intrathecal drug delivery
 Jon Raphael and Kate Grady

32 Cryoanalgesia
 Gunnvald Kvarstein and Henrik Högström

33 Radiofrequency lesioning and treatment of chronic pain
 Ben JP Crul, Jan HM Van Zundert, and Maarten Van Kleef

34 Spinal cord stimulation
 Simon Thomson and Malvern May

35 Epidural (interlaminar, intraforaminal, and caudal) steroid injections for back pain and sciatica
 Ivan N Ramos-Galvez and Ian D Goodall
36 Epiduroscopy and endoscopic adhesiolysis
Jonathan Richardson, Jan Willem Kallewaard, and Gerbrand J Groen

37 Discogenic low back pain: intradiscal thermal (radiofrequency) annuloplasty and artificial disk implants
Gunnvald Kvarstein, Leif Måwe, and Aage Indahl

Section E: Pediatric techniques
38 Pain assessment in children
Nancy F Bandstra and Christine T Chambers

39 Procedures for pediatric pain management
Richard F Howard

40 Mind/body skills for children in pain
Timothy Culbert, Stefan Friedrichsdorf, and Leora Kuttner

PART III CLINICAL TRIALS
41 Placebo and nocebo
Luana Colloca, Damien G Finniss, and Fabrizio Benedetti

42 Clinical trials: acute and chronic pain
Audun Stubhaug and Harald Breivik

43 Clinical trials: dental pain
Else K Breivik Hals

44 Clinical trials: cancer pain
Ulf E Kongsgaard and Mads U Werner

45 Clinical trials: neuropathic pain
Andrew SC Rice

46 Techniques of systematic reviews and meta-analysis in pain research
Lesley A Smith

PART IV ORGANIZATION OF MULTIDISCIPLINARY PAIN MANAGEMENT TEAMS
47 Organization and role of acute pain services
David Counsell, Pamela E Macintyre, and Harald Breivik

48 Acute pain services and organizational change
Alison E Powell, Huw TO Davies, Jonathan Bannister, and William A Macrae

49 Comprehensive pain rehabilitation programs: a North American reappraisal
Peter R Wilson

50 Organization of pediatric pain services
George Chalkiadis

51 Where does pain fit within healthcare delivery systems and organizations?
Brian R Theodore, Chetwyn CH Chan, and Robert J Gatchel

PART V OTHER ISSUES
52 The use of guidelines, standards, and quality improvement initiatives in the management of postoperative pain
Tone Rustoen and Christine Miaskowski

53 The expert medicolegal report
Peter JD Evans

Index

Please note: The table of contents and a combined index for all four volumes in the series can be found on the Clinical Pain Management website at: www.clinicalpainmanagement.co.uk.
Contributors

Frank Andrasik PhD
Distinguished University Professor
Department of Psychology, University of West Florida
Pensacola, USA

Lars Arendt-Nielsen Prof Dr Med Sci PhD
Professor
Center for Sensory-Motor Interaction (SMI), Laboratory for Experimental Pain Research, Aalborg University
Aalborg, Denmark

Nancy F Bandstra BSc
Doctoral Student in Clinical Psychology
Dalhousie University, Halifax, Canada

Jonathan Bannister MB ChB FRCA
Consultant in Pain Medicine and Anaesthesia
Honorary Senior Lecturer, Ninewells Hospital and Medical School
Dundee, UK

Andrew P Baranowski MD FRCA
Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists
Consultant in Pain Medicine
The Pain Management Centre, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK

Fabrizio Benedetti MD
Professor of Physiology and Neuroscience
Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy

David Bennett MB PhD MRCP
Wellcome Trust Clinical Scientist Fellow and Honorary Specialist Registrar in Neurology
Wolfson Centre for Age Related Diseases, Department of Neurology, Guy’s and St Thomas’ NHS Trust, London, UK

Else K Breivik Hals DDS PhD
Oral-Maxillofacial Surgeon
Department of Oral and Maxillofacial Surgery, Section of Maxillofacial Surgery, ENT Department, Rikshospitalet University Hospital, Oslo, Norway

Harald Breivik MD DMSc FRCA
Professor
University of Oslo, Section of Anaesthesiology and Intensive Care Medicine, Rikshospitalet University Hospital
Oslo, Norway

William I Campbell MD PhD FRCA FFARCSI Dip Pain Med CARCSI
Consultant in Anaesthesia and Pain Medicine
The Ulster Hospital, Belfast, UK

George Chalkiadis MB BS DA (LON) FANZCA FFPMANZCA
Staff Anaesthetist and Pain Medicine Specialist, Head Children’s Pain Management Service, Royal Children’s Hospital Melbourne; and Clinical Associate Professor
University of Melbourne, Murdoch Children’s Research Institute Department of Paediatrics, Victoria, Australia

Christine T Chambers PhD RPsych
Associate Professor of Pediatrics and Psychology
Canada Research Chair in Pain and Child Health, Dalhousie University and IWK Health Centre, Halifax, Canada

Chetwyn CH Chan FOT BSOT MSc PhD
Professor and Head of Department
Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR

Luana Colloca MD PhD
Research Associate
Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy

Ron Cooper MD FFARCSI FIPP
Consultant in Anaesthesia and Pain Relief
Pain Relief Clinic, Causeway Hospital, Coleraine, UK

David Counsell MB ChB FRCA PhD
Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists
Consultant Anaesthetist
Department of Anaesthesia, Wrexham Maelor Hospital
Wrexham, UK
Contributors

Geert Crombez PhD
Professor of Health Psychology
Department of Experimental Clinical and Health Psychology
Ghent University, Ghent, Belgium

Ben JP Crul
Professor of Pain Management
Pain Expertise Centre, Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, The Netherlands

Timothy Culbert MD
Medical Director
Integrative Medicine and Cultural Care, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA

Mike Cummings MB ChB Dip Med Ac
Medical Director
British Medical Acupuncture Society, London, UK

Michele Curatolo MD PhD
Professor and Head, Division of Pain Therapy; and Vice Chief
University Department of Anaesthesiology and Pain Therapy, Inselspital, Bern, Switzerland

Natasha C Curran FRCA
Consultant in Pain Medicine and Anaesthesia
University College London Hospitals, London, UK

Huw TO Davies BA MA MSc PhD
Professor of Health Care Policy and Management
Social Dimensions of Health Institute, Universities of Dundee and St Andrews, Dundee, UK

Jeroen De Jong MSc
Kinesiologist and Behavioural Therapist
Department of Rehabilitation Medicine, University Hospital Maastricht, Maastricht, The Netherlands

Peter JD Evans MB BS FRCA DMS
Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists
Consultant in Pain Medicine
Pain Management Centre, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK

Damien G Finniss MSc Med
Clinical Lecturer
Pain Management Research Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia

Herta Flor PhD
Central Institute of Mental Health, Department of Neuropsychology, Ruprecht-Karls-University of Heidelberg Mannheim, Germany

Stefan Friedrichsdorf MD
Medical Director
Pain and Palliative Care, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA

Robert J Gatchel PhD ABPP
Professor and Chair
Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA

Louis Gifford FCSP MapSc BSc
Chartered Physiotherapist
Falmouth Physiotherapy Clinic, Falmouth, UK

Ian D Goodall FRCA
Consultant
Chelsea and Westminster Healthcare NHS Foundation Trust London, UK

Kate Grady BSc FRCA
Consultant in Pain Medicine and Anaesthesia
Department of Anaesthesia, University Hospital of South Manchester Foundation Trust, Wythenshawe, UK

Gerbrand J Groen MD PhD
Associate Professor
Department of Anesthesiology and Pain Treatment, Utrecht University Medical Centre, Utrecht, The Netherlands

Hilde Berner Hammer MD PhD
Consultant in Rheumatology
Department of Rheumatology, Diakonhjemmet Hospital Oslo, Norway

Peter HTG Heuts MD PhD
Consultant in Rehabilitation Medicine
Rehabilitation Center Leijpark, Tilburg, The Netherlands

Henrik Högström MD
Senior Consultant, Pain Unit
Department of Anesthesiology, Aker University Hospital Oslo, Norway

David Hill MD FCARCSI DIP PAIN MED RCSI
Consultant in Anaesthesia and Pain Medicine
Ulster Hospital; and Honorary Senior Lecturer
Queen's University, Belfast, UK

Richard F Howard BSc MB ChB FRCA
Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists
Consultant and Clinical Director
Department of Anaesthesia, Great Ormond Street Hospital and the Institute of Child Health, London, UK

Aage Indahl MD DMS.
Hospital for Rehabilitation, Rikshospitalet Medical Center Stavern, Norway

Humaira Jamal PhD MRCP
Consultant in Palliative Medicine
Mount Vernon and Harefield Hospitals, Northwood, UK
Contributors

Marie Johnston BSc PhD FRHS FRSE FMedSci AcSS
Professor in Health Psychology
College of Life Sciences and Medicine, University of Aberdeen
Aberdeen, UK

Ellen Jørum MD PhD
Professor
Rikshospitalet University Hospital
Oslo, Norway

Jan Willem Kallewaard MD
Consultant Anesthetist, Specialist in Pain
Alyssis Zorggroep, Arnhem, The Netherlands

Ulf E Kongsgaard MD PhD
Professor
The Norwegian Radium Hospital, Division of Anaesthesiology
and Intensive Care Medicine, Rikshospitalet University Hospital;
and Medical Faculty, University of Oslo, Oslo, Norway

Leora Kuttner PhD Reg Psych
Clinical Professor
Department of Paediatrics, University of British Columbia and
BC Children’s Hospital, Vancouver, Canada

Gunnvald Kvarstein MD PhD
Medical Director
Section of Pain Management, Rikshospitalet University Hospital
Oslo, Norway

Michael Lee MBBS FRCA
MRC Clinical Research Training Fellow
Oxford Centre for Functional Magnetic Resonance Imaging of
the Brain, FMRIB Centre, UK

Steven J Linton
Professor of Clinical Psychology
Sweden Center for Health and Medical Psychology, Department
of Behavioral, Social and Legal Sciences—Psychology
Ärhus University, Örebro, Sweden; and
Pain Management Research Institute, University of Sydney
Sydney, Australia

Stephan Locher MD
University Department of Anaesthesiology and Pain Therapy
Inselspital, Bern, Switzerland

Pamela E MacIntyre BMedSc MBBS MHA FANZCA FFFMANZCA
Director
Acute Pain Service, Department of Anaesthesia, Pain Medicine
and Hyperbaric Medicine, Royal Adelaide Hospital and
University of Adelaide, Adelaide, Australia

William A Macrae MB ChB FRCA
Consultant in Pain Medicine
Honorary Senior Lecturer, Ninewells Hospital and Medical School
Dundee, UK

Leif Måwe MD
Section of Pain Management, Rikshospitalet University Hospital
Oslo, Norway

Malvern May MRCP FRCA
Fellow of the Faculty of Pain Medicine of the
Royal College of Anaesthetists
Consultant in Pain Medicine and Anaesthesia
Basildon and Thurrock University Hospitals, Essex, UK

Lance M McCracken PhD
Consultant Clinical Psychologist and Clinical Lead
Bath Centre for Pain Services, Royal National Hospital for
Rheumatic Diseases NHS Foundation Trust; and
Senior Visiting Fellow
Department of Psychology, University of Bath, Bath, UK

Christine Miaskowski RN PhD FAAN
Professor and Associate Dean
Department of Physiological Nursing, University of California
San Francisco, CA, USA; and
Consultant
The Centre for Shared Decision Making and Nursing Research
Rikshospitalet University Hospital, Oslo, Norway

Vanessa Morris MD FRCP
Consultant Rheumatologist
Centre for Rheumatology, University College Hospital London
and University College London, London, UK

Paul R Nandi FRCP FRCA
Consultant in Neuroanaesthesia and Pain Medicine
University College London Hospitals Pain Management Centre
The National Hospital for Neurology and Neurosurgery
London, UK

Timothy P Nash MBBS DObstRCOG FRCA
Fellow of the Faculty of Pain Medicine of the
Royal College of Anaesthetists
Honorary Senior Lecturer
Pain Research Institute, Clinical Sciences Centre, University
Hospital Aintree, University of Liverpool, UK

Toby Newton-John B(Adj) MPsych(Clin) PhD
Clinical Psychologist and Program Director
Innervate Pain Management
Broadmeadow; and
Honorary Associate, Faculty of Medicine
University of Sydney, NSW, Australia

Michael K Nicholas PhD
Director
ADAPT Pain Management Programme, Pain Management
Research Institute, University of Sydney at Royal North Shore
Hospital, St Leonards, NSW, Australia

Rachael Powell BSc(Hons) PhD MSc
RCUK Fellow
School of Life and Health Sciences, Aston University
Birmingham, UK

Alison E Powell MA PhD
Centre for Public Policy and Management, University of
St Andrews, St Andrews, UK
Ivan N Ramos-Galvez FRCA
Consultant in Pain Medicine
Royal Berkshire NHS Foundation Trust, Berkshire, UK

Jon Raphael MSC MD FRCA
Professor
Faculty of Health, Birmingham City University, Edgbaston
Birmingham, UK

Andrew SC Rice MB BS MD FRCA
Reader in Pain Research
Department of Anaesthetics, Pain Medicine and Intensive Care
Imperial College London; and
Honorary Consultant in Pain Medicine
Chelsea and Westminster Hospital Foundation NHS Trust
London, UK

Jonathan Richardson MD FRCP FRCA FIPP
Consultant Anaesthetist
Specialist in Pain, Bradford Royal Infirmary, Pain Clinic
Bradford, UK

Steve Robson MCSP BSc(Hons)
Chartered Physiotherapist
Aspen Physiotherapy Clinic, Prudhoe, UK

Tone Rustoen RN PhD
Professor and Senior Researcher
The Centre for Shared Decision Making and Nursing Research
Rikshospitalet University Hospital and Oslo University College
Oslo, Norway

Michael Shipley MA MD FRCP
Consultant Rheumatologist
Centre for Rheumatology, University College Hospital London and
University College London, London, UK

Lesley A Smith BSc PhD
Senior Research Fellow
School of Health and Social Care, Oxford Brookes University
Oxford, UK

David Spiegel MD
Willson Professor in the School of Medicine, Associate Chair
Department of Psychiatry and Behavioral Sciences, Stanford
University, CA, USA

Audun Stubhaug MD DMSc
Professor
Oslo University, Department of Anaesthesiology and Intensive Care Medicine, Rikshospitalet University Hospital
Oslo, Norway

Brian R Theodore MS
PhD Candidate, Department of Psychology, College of Science
University of Texas at Arlington, Arlington, TX, USA

Simon Thomson MBBS FRCA FIPP
Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists
Consultant in Pain Medicine and Anaesthesia
Basildon and Thurrock University Hospitals, London, UK

Irene Tracey PhD
Nuffield Professor of Anaesthetic Science, Director
Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, FMRIB Centre, Oxford University Department of Clinical Neurology and Nuffield Department Anaesthetics, John Radcliffe Hospital, Oxford, UK

Ivan F Trotman MBBS MD FRCP
Consultant in Palliative Medicine
Mount Vernon Hospital, Northwood, UK

Johannes Van Der Merwe BA Hons Clin Psych MA Clin Psych DTh Dip Clin Hyp
Consultant Clinical Psychologist and Unit Manager
The Real Health Institute, London, UK

Maarten Van Kleef MD PhD
Professor of Anaesthesiology
Department of Anaesthesiology and Pain Management
University Hospital of Maastricht, Maastricht, The Netherlands

Jan HM Van Zundert MD PhD
Head of Multidisciplinary Pain Center
Ziekenhuis Oost-Limburg, Genk, Belgium; and University Hospital of Maastricht, Maastricht, The Netherlands

Jeanine A Verbunt MD PhD
Rehabilitation Foundation Limburg, Hoensbroek, The Netherlands

Johan WS Vlaeyen PhD
Professor of Behavioural Medicine
Research Center for Health Psychology, Department of Psychology, University of Leuven, Leuven, Belgium; and Department of Clinical Psychological Science, University of Maastricht, Maastricht, The Netherlands

Kevin E Vowles PhD
Research Fellow and Clinical Psychologist
Centre for Pain Research, School of Health, University of Bath; and Bath Centre for Pain Services, Royal National Hospital for Rheumatic Diseases, Bath, UK

Mads U Werner MD DMSc
Associate Professor
Cancer Pain Service, Department of Oncology, University Hospital, Lund, Sweden

Peter R Wilson MB BS PhD
Professor of Pain Medicine, Mayo Clinic College of Medicine
Rochester, MN, USA

Amanda C de C Williams PhD CPsychol
Reader in Clinical Health Psychology
University College London; and
Consultant Clinical Psychologist
National Hospital for Neurology and Neurosurgery
London, UK

Harriët M Wittink PhD MS PT
Professor, Research Group Lifestyle and Health
University of Applied Sciences Utrecht, Utrecht, The Netherlands
Since the successful first edition of Clinical Pain Management was published in 2002, the evidence base in many areas of pain medicine has changed substantially, thus creating the need for this second edition. We have retained the central ethos of the first volume in that we have continued to provide comprehensive coverage of pain medicine, with the text geared predominantly to the requirements of those training and practicing in pain medicine and related specialties. The emphasis continues to be on delivering this coverage in a format that is easily accessed and digested by the busy clinician in practice.

As before, Clinical Pain Management comprises four volumes. The first three cover the main disciplines of acute, chronic, and cancer pain management, and the fourth volume covers the practical aspects of clinical practice and research. The four volumes can be used independently, while together they give readers all they need to know to deliver a successful pain management service.

Of the 161 chapters in the four volumes, almost a third are brand new to this edition while the chapters that have been retained have been completely revised, in many cases under new authorship. This degree of change reflects ongoing progress in this broad field, where research and development provide a rapidly evolving evidence base. The international flavor of Clinical Pain Management remains an important feature, and perusal of the contributor pages will reveal that authors and editors are drawn from a total of 16 countries.

A particularly popular aspect of the first edition was the practice of including a system of simple evidence scoring in most of the chapters. This enables the reader to understand quickly the strength of evidence which supports a particular therapeutic statement or recommendation. This has been retained for the first three volumes, where appropriate. We have, however, improved the system used for scoring evidence from a three point scale used in the first edition and adopted the five point Bandolier system which is in widespread use and will be instantly familiar to many readers (www.jr2.ox.ac.uk/bandolier/band6/b6-5.html).

We have also retained the practice of asking authors to highlight the key references in each chapter. Following feedback from our readers we have added two new features for this edition: first, there are key learning points at the head of each chapter summarizing the most salient points within the chapter; and second, the series is accompanied by a companion website with downloadable figures.

This project would not have been possible without the hard work and commitment of the chapter authors and we are deeply indebted to all of them for their contributions. The volume editors have done a sterling job in diligently editing a large number of chapters, and to them we are also most grateful. Any project of this magnitude would be impossible without substantial support from the publishers – in particular we would like to acknowledge our debt to Jo Koster and Zelah Pengilley at Hodder. They have delivered the project on a tight deadline and ensured that a large number of authors and editors were kept gently, but firmly, “on track.”

Andrew SC Rice, Douglas Justins, Toby Newton-John, Richard F Howard, Christine A Miaskowski
London, Newcastle, and San Francisco

I would also like to add my personal thanks to the Series Editors who have given their time generously and made invaluable contributions through the whole editorial process from the very outset of discussions regarding a second edition in deciding upon the content of each volume and in selecting Volume Editors. More recently, they have provided an important second view in the consideration of all submitted chapters, not to mention stepping in and assisting with first edits where needed. The timely completion of the second edition would not have been possible without this invaluable input.

Andrew SC Rice
Lead Editor
Introduction to Clinical Pain Management: Practice and Procedures

Despite extensive research into the origins and mechanisms of acute and chronic pain, its management remains a challenge to all involved in health care. This is partly due to our incomplete knowledge of the subject and the plasticity of the mechanisms involved. The need to educate patients and develop therapeutic means that are effective but are well tolerated, are additional problems encountered in daily practice. Each chapter in Practice and Procedures can stand alone or work to complement the chapters in preceding volumes – Acute Pain, Chronic Pain, and Cancer Pain. Authors have been chosen as having a special interest and expertise in the practical applications they describe. They have been invited to present their work in a style that is not only comprehensive but also easy to read, with summaries of key points and evidence-based references. The editors and authors have endeavored to provide the reader with a contemporary text that utilizes our latest knowledge on the management of pain to maximize a favorable outcome.

Practice and Procedures covers various forms of pain assessment in addition to a wide range of therapies that can be provided by a diverse range of healthcare disciplines, including practical procedures and applications in the management of acute, chronic, and cancer pain. The volume concludes with valuable chapters about clinical research methods and writing medicolegal reports.

We trust that this volume will be of value to all healthcare workers, regardless of their discipline, and that it will help them to keep abreast of developments and challenges in the maturing discipline of applied pain medicine.

Harald Breivik, William I Campbell, and Michael K Nicholas
Oslo, Belfast, and Sydney
How to use this book

SPECIAL FEATURES

The four volumes of Clinical Pain Management incorporate the following special features to aid the readers’ understanding and navigation of the text.

Key learning points

Each chapter opens with a set of key learning points which provide readers with an overview of the most salient points within the chapter.

Cross-references

Throughout the chapters in this volume you will find cross-references to chapters in other volumes in the Clinical Pain Management series. Each cross-reference will indicate the volume in which the chapter referred to is to be found.

Evidence scoring

In chapters where recommendations for surgical, medical, psychological, and complementary treatment and diagnostic tests are presented, the quality of evidence supporting authors’ statements relating to clinical interventions, or the papers themselves, are graded following the Oxford Bandolier system by insertion of the following symbols into the text:

[I] Strong evidence from at least one published systematic review of multiple well-designed randomized controlled trials

[II] Strong evidence from at least one published properly designed randomized controlled trial of appropriate size and in an appropriate clinical setting

[III] Evidence from published well-designed trials without randomization, single group pre-post, cohort, time series, or matched case-controlled studies

[IV] Evidence from well-designed non-experimental studies from more than one center or research group

[V] Opinions of respected authorities, based on clinical evidence, descriptive studies or reports of expert consensus committees.

Oxford Bandolier system used by kind permission of Bandolier: www.jr2.ox.ac.uk/Bandolier

Where no grade is inserted, the quality of supporting evidence, if any exists, is of low grade only (e.g. case reports, clinical experience, etc).

Other textbooks devoted to the subject of pain include a tremendous amount of anecdotal and personal recommendations, and it is often difficult to distinguish these from those with an established evidence base. This text is thus unique in allowing the reader the opportunity to do this with confidence.
Reference annotation

The reference lists are annotated with asterisks, where appropriate, to guide readers to key primary papers, major review articles (which contain extensive reference lists), and clinical guidelines. We hope that this feature will render extensive lists of references more useful to the reader and will help to encourage self-directed learning among both trainees and practicing physicians.

A NOTE ON DRUG NAMES

The authors have used the international nonproprietary name (INN) for drugs where possible. If the INN name differs from the US or UK name, authors have used the INN name followed by the US and/or UK name in brackets on first use within a chapter.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
</tr>
<tr>
<td>AC</td>
<td>acromioclavicular</td>
</tr>
<tr>
<td>ACC</td>
<td>anterior cingulate cortex</td>
</tr>
<tr>
<td>ACMP</td>
<td>Access to Controlled Medicines Program</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Rheumatology</td>
</tr>
<tr>
<td>ACT</td>
<td>acceptance and commitment therapy</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>AHGPR</td>
<td>Agency for Health Care Policy and Research</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>aINS</td>
<td>anterior insula</td>
</tr>
<tr>
<td>ALAT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ANA</td>
<td>antinuclear antibody</td>
</tr>
<tr>
<td>ANCA</td>
<td>antineutrophil cytoplasmic antibody</td>
</tr>
<tr>
<td>ANS</td>
<td>autonomic nervous system</td>
</tr>
<tr>
<td>anti-CCP</td>
<td>anti-cyclic citrullinated protein</td>
</tr>
<tr>
<td>AP</td>
<td>anteroposterior</td>
</tr>
<tr>
<td>APS</td>
<td>American Pain Society; or acute pain service</td>
</tr>
<tr>
<td>APTT</td>
<td>activated partial thromboplastin time</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anesthesiologists</td>
</tr>
<tr>
<td>ASAT</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ASIS</td>
<td>anterior superior iliac spine</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BAPQ</td>
<td>Bath Adolescent Pain Questionnaire</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>BOLD</td>
<td>blood oxygen level dependent</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BPI</td>
<td>Brief Pain Inventory</td>
</tr>
<tr>
<td>CARF</td>
<td>Commission on Accreditation of Rehabilitation Facilities</td>
</tr>
<tr>
<td>CBF</td>
<td>cerebral blood flow</td>
</tr>
<tr>
<td>CBT</td>
<td>cognitive-behavioral therapy</td>
</tr>
<tr>
<td>CCBT</td>
<td>contextual cognitive-behavioral therapy</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>CCP</td>
<td>content, context, and process</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CGH</td>
<td>cervicogenic headache</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene-related peptide</td>
</tr>
<tr>
<td>CHEOPS</td>
<td>Children’s Hospital of Eastern Ontario Pain Scale</td>
</tr>
<tr>
<td>CIDP</td>
<td>chronic inflammatory demyelinating polyradiculoneuropathy</td>
</tr>
<tr>
<td>CK</td>
<td>creatine kinase</td>
</tr>
<tr>
<td>CLBP</td>
<td>chronic low back pain</td>
</tr>
<tr>
<td>CMT</td>
<td>Charcot–Marie–Tooth</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COMT</td>
<td>catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standard of Reporting Trials</td>
</tr>
<tr>
<td>COPM</td>
<td>Canadian Occupational Performance Measure</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclooxygenase-2</td>
</tr>
<tr>
<td>CPG</td>
<td>clinical practice guidelines</td>
</tr>
<tr>
<td>CPNB</td>
<td>chronic pain service</td>
</tr>
<tr>
<td>CQI</td>
<td>Chronic Pain Values Inventory</td>
</tr>
<tr>
<td>CQI</td>
<td>continuous quality improvement</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CRPS</td>
<td>complex regional pain syndrome</td>
</tr>
<tr>
<td>CSCI</td>
<td>continuous subcutaneous infusion</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CSQ</td>
<td>Coping Strategies Questionnaire</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CUA</td>
<td>cost-utility analysis</td>
</tr>
<tr>
<td>DA</td>
<td>dopamine</td>
</tr>
<tr>
<td>DAPOS</td>
<td>Depression, Anxiety, and Positive Outlook Scale</td>
</tr>
<tr>
<td>DASS</td>
<td>Depression, Anxiety and Stress Scale</td>
</tr>
<tr>
<td>DESS</td>
<td>Échelle Douleur Enfant San Salvadour</td>
</tr>
<tr>
<td>DLPFC</td>
<td>dorsolateral prefrontal cortex</td>
</tr>
<tr>
<td>DNIC</td>
<td>diffuse noxious inhibitory control</td>
</tr>
<tr>
<td>DRG</td>
<td>dorsal root ganglion</td>
</tr>
<tr>
<td>DSM</td>
<td>Diagnostic and Statistical Manual of Mental Disorders</td>
</tr>
<tr>
<td>DTI</td>
<td>diffusion tensor imaging</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EDA</td>
<td>electrophysiological activity</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalography</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyogram</td>
</tr>
<tr>
<td>EOP</td>
<td>external occipital protuberance</td>
</tr>
<tr>
<td>ERP</td>
<td>early receptor potential</td>
</tr>
<tr>
<td>ES</td>
<td>epidural space</td>
</tr>
<tr>
<td>ESI</td>
<td>epidural steroid injection</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>FABQ</td>
<td>Fear-Avoidance Beliefs Questionnaire</td>
</tr>
<tr>
<td>FAS</td>
<td>Functional Activity Scale</td>
</tr>
<tr>
<td>FBSS</td>
<td>failed back surgery syndrome</td>
</tr>
<tr>
<td>FBT</td>
<td>fentanyl buccal tablets</td>
</tr>
<tr>
<td>FDI</td>
<td>Functional Disability Inventory</td>
</tr>
<tr>
<td>FEV</td>
<td>forced expiratory volume</td>
</tr>
<tr>
<td>FLACC</td>
<td>Face, Legs, Arms, Cry, Consolability</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FOP</td>
<td>functional pain scale</td>
</tr>
<tr>
<td>GAN</td>
<td>greater auricular nerve</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
<tr>
<td>GON</td>
<td>greater occipital nerve</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HIZ</td>
<td>high intensity zones</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HMO</td>
<td>health maintenance organization</td>
</tr>
<tr>
<td>HPA</td>
<td>hypothalamic–pituitary–adrenal</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>HRV</td>
<td>heart rate variability</td>
</tr>
<tr>
<td>HB</td>
<td>hemoglobin</td>
</tr>
<tr>
<td>IASP</td>
<td>International Association for the Study of Pain</td>
</tr>
<tr>
<td>IBS</td>
<td>irritable bowel syndrome</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>ICF</td>
<td>International Classification of Functioning, Disability and Health</td>
</tr>
<tr>
<td>IDET</td>
<td>intradiscal electrothermal therapy</td>
</tr>
<tr>
<td>IDTA</td>
<td>intradiscal thermal annuloplasty</td>
</tr>
<tr>
<td>IEC</td>
<td>independent ethics committee</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-gamma</td>
</tr>
<tr>
<td>IHN</td>
<td>ilio-hypogastric nerve</td>
</tr>
<tr>
<td>IIN</td>
<td>ilio-inguinal nerve</td>
</tr>
<tr>
<td>IL-2</td>
<td>interleukin-2</td>
</tr>
<tr>
<td>IL-6</td>
<td>interleukin 6</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IMMPACT</td>
<td>Initiative on Methods, Measurement, and Pain Assessment</td>
</tr>
<tr>
<td>INCB</td>
<td>International Narcotic Control Board</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>N-acetyl aspartate</td>
</tr>
<tr>
<td>NFCPC</td>
<td>Non-Communicating Children's Pain Checklist</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>NGC</td>
<td>nucleus reticularis gigantocellularis</td>
</tr>
<tr>
<td>NH</td>
<td>natural history</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartic acid</td>
</tr>
<tr>
<td>NNH</td>
<td>number needed to harm</td>
</tr>
<tr>
<td>NNT</td>
<td>number needed to treat</td>
</tr>
<tr>
<td>NPY</td>
<td>neuropeptide Y</td>
</tr>
<tr>
<td>NRD</td>
<td>nucleus reticularis dorsalis</td>
</tr>
<tr>
<td>NRS</td>
<td>numerical rating scale</td>
</tr>
<tr>
<td>NSAID</td>
<td>nonsteroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>OA</td>
<td>osteoarthritis</td>
</tr>
<tr>
<td>OBT</td>
<td>operant behavioral therapy</td>
</tr>
<tr>
<td>ODI</td>
<td>Oswestry Disability Index</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>OrbF</td>
<td>orbitofrontal cortex</td>
</tr>
<tr>
<td>OTC</td>
<td>over the counter</td>
</tr>
<tr>
<td>OTFC</td>
<td>oral transmucosal fentanyl citrate</td>
</tr>
<tr>
<td>PACU</td>
<td>Post Anesthesia Care Unit</td>
</tr>
<tr>
<td>PAD</td>
<td>peptidylarginine deiminase</td>
</tr>
<tr>
<td>PAG</td>
<td>periaqueductal gray</td>
</tr>
<tr>
<td>PAR</td>
<td>pain relief scale</td>
</tr>
<tr>
<td>PASS</td>
<td>Pain Anxiety Symptoms Scale</td>
</tr>
<tr>
<td>PBCLS</td>
<td>Procedure Behavior Check List</td>
</tr>
<tr>
<td>PBRS-R</td>
<td>Procedure Behavioral Rating Scale-Revised</td>
</tr>
<tr>
<td>PCA</td>
<td>patient-controlled analgesia</td>
</tr>
<tr>
<td>PCC</td>
<td>percutaneous cervical cordotomy</td>
</tr>
<tr>
<td>PCEA</td>
<td>patient-controlled epidural analgesia</td>
</tr>
<tr>
<td>PCINA</td>
<td>patient-controlled intranasal analgesia</td>
</tr>
<tr>
<td>PCQ</td>
<td>Pain Coping Questionnaire</td>
</tr>
<tr>
<td>PCS-C</td>
<td>Pain Catastrophizing Scale for Children</td>
</tr>
<tr>
<td>PCTS</td>
<td>patient-controlled transdermal system</td>
</tr>
<tr>
<td>PDA</td>
<td>personal digital assistants</td>
</tr>
<tr>
<td>PDPH</td>
<td>postdural puncture headache</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PFC</td>
<td>prefrontal cortices</td>
</tr>
<tr>
<td>PGIC</td>
<td>Patients Global Impression of Change</td>
</tr>
<tr>
<td>PGP</td>
<td>protein gene product</td>
</tr>
<tr>
<td>PHN</td>
<td>postherpetic neuralgia</td>
</tr>
<tr>
<td>PHODA</td>
<td>Photograph Series of Daily Activities</td>
</tr>
<tr>
<td>PID</td>
<td>pain intensity difference</td>
</tr>
<tr>
<td>PIPP</td>
<td>Premature Infant Pain Profile</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nerve stimulator</td>
</tr>
<tr>
<td>POMS</td>
<td>Profile of Mood States</td>
</tr>
<tr>
<td>PONV</td>
<td>postoperative nausea and vomiting</td>
</tr>
<tr>
<td>POQ</td>
<td>Patient Outcome Questionnaire</td>
</tr>
<tr>
<td>POQ-VA</td>
<td>Pain Outcome Questionnaire-VA</td>
</tr>
<tr>
<td>PP</td>
<td>per protocol</td>
</tr>
<tr>
<td>PPG</td>
<td>photoplethysmography</td>
</tr>
<tr>
<td>PPI</td>
<td>present pain intensity; or proton pump inhibitor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>present pain intensity; or proton pump inhibitor</td>
<td></td>
</tr>
<tr>
<td>PR3</td>
<td>proteinase 3</td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>pulsed radiofrequency</td>
<td></td>
</tr>
<tr>
<td>PRI</td>
<td>pain rating index</td>
<td></td>
</tr>
<tr>
<td>PSIS</td>
<td>posterior superior iliac spine</td>
<td></td>
</tr>
<tr>
<td>PTSD</td>
<td>posttraumatic stress disorder</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoid arthritis</td>
<td></td>
</tr>
<tr>
<td>rACC</td>
<td>rostral anterior cingulate cortex</td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>risk difference</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>radiofrequency; or rheumatoid factor</td>
<td></td>
</tr>
<tr>
<td>ROM</td>
<td>range of motion</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>risk ratio</td>
<td></td>
</tr>
<tr>
<td>RSD</td>
<td>reflex sympathetic dystrophy</td>
<td></td>
</tr>
<tr>
<td>RVM</td>
<td>rostral ventromedial medulla</td>
<td></td>
</tr>
<tr>
<td>SAA</td>
<td>serum amyloid A</td>
<td></td>
</tr>
<tr>
<td>SCM</td>
<td>sterno-clidomastoid</td>
<td></td>
</tr>
<tr>
<td>SCS</td>
<td>spinal cord stimulation</td>
<td></td>
</tr>
<tr>
<td>SDT</td>
<td>signal detection theory</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>somatosensory-evoked potential</td>
<td></td>
</tr>
<tr>
<td>SF-36</td>
<td>Short-Form 36</td>
<td></td>
</tr>
<tr>
<td>SF-MPQ</td>
<td>Short-Form McGill Pain Questionnaire</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
<td></td>
</tr>
<tr>
<td>SLR</td>
<td>straight leg raise</td>
<td></td>
</tr>
<tr>
<td>SMD</td>
<td>standardized mean difference</td>
<td></td>
</tr>
<tr>
<td>SMK</td>
<td>Sluijter–Metha</td>
<td></td>
</tr>
<tr>
<td>SMP</td>
<td>sympathetically maintained pain</td>
<td></td>
</tr>
<tr>
<td>SNAG</td>
<td>sustained natural apophyseal glides</td>
<td></td>
</tr>
<tr>
<td>SNL</td>
<td>superior nuchal line</td>
<td></td>
</tr>
<tr>
<td>SNS</td>
<td>sympathetic nervous system</td>
<td></td>
</tr>
<tr>
<td>SOPA</td>
<td>Survey of Pain Attitudes</td>
<td></td>
</tr>
<tr>
<td>SPC</td>
<td>superior parietal cortex</td>
<td></td>
</tr>
<tr>
<td>SPID</td>
<td>summed pain intensity difference</td>
<td></td>
</tr>
<tr>
<td>Spo2</td>
<td>oxygen saturation</td>
<td></td>
</tr>
<tr>
<td>SPTLC1</td>
<td>serine palmitoyl transferase long chain base subunit 1</td>
<td></td>
</tr>
<tr>
<td>SSSRI</td>
<td>specific serotonin- and noradrenaline-reuptake inhibitors</td>
<td></td>
</tr>
<tr>
<td>SSRI</td>
<td>specific serotonin-reuptake inhibitors</td>
<td></td>
</tr>
<tr>
<td>STAI</td>
<td>State Trait Anxiety Inventory</td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>tricyclic antidepressants</td>
<td></td>
</tr>
<tr>
<td>TENS</td>
<td>transcutaneous electrical nerve stimulation</td>
<td></td>
</tr>
<tr>
<td>THA</td>
<td>triamcinolone hexacetonide</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>trapezius muscles</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>TMD</td>
<td>temporomandibular pain and dysfunction</td>
<td>VCU</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumor necrosis factor-alpha</td>
<td>VIP</td>
</tr>
<tr>
<td>TON</td>
<td>third occipital nerve</td>
<td>VRS</td>
</tr>
<tr>
<td>TOTPAR</td>
<td>total pain relief</td>
<td></td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid-stimulating hormone</td>
<td>WAD</td>
</tr>
<tr>
<td>TSK</td>
<td>Tampa Scale for Kinesiophobia</td>
<td>WHO</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
<td>WMA</td>
</tr>
<tr>
<td>VA</td>
<td>Veterans Administration</td>
<td>WMD</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analog scale</td>
<td>WOMAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | History-taking and examination of the patient with chronic pain
Paul R Nandi and Toby Newton-John |
| 2 | Practical methods for pain intensity measurements
William I Campbell and Kevin E Vowles |
| 3 | Selecting and applying pain measures
Johannes Van Der Merwe and Amanda C de C Williams |
| 4 | Sensory testing and clinical neurophysiology
Ellen Jørum and Lars Arendt-Nielsen |
| 5 | Pharmacological diagnostic tests
Andrew P Baranowski and Natasha C Curran |
| 6 | The role of biochemistry and serology in pain diagnosis
Hilde Berner Hammer |
| 7 | Diagnostic algorithms for painful peripheral neuropathy
David Bennett |
| 8 | Novel imaging techniques
Michael Lee and Irene Tracey |
History-taking and examination of the patient with chronic pain

PAUL R NANDI AND TOBY NEWTON-JOHN

KEY LEARNING POINTS

- The initial medical interview should aim to establish rapport as well as obtain information.
- Case note paper with printed headings may assist in the structured recording of information.
- Behaviors are valuable physical signs in the chronic pain patient, but over-reaction does not mean that pain is psychogenic.
- The pain psychology interview should ideally gather data, as well as begin to introduce treatment concepts.
- Explaining the purpose of the assessment at the outset can allay fears or correct misunderstandings.
- The use of self-report assessment tools is a vital part of the assessment process, but not a substitute for careful clinical evaluation.

MEDICAL ASSESSMENT

Chronic pain patients are often seen as “difficult.” This perception should be considered in context. Chronic pain sufferers may feel that their symptoms are trivialized or frankly disbelieved by doctors, and present to a pain specialist for the first time holding this view. By definition, these patients will have had their pain for at least three months, and in practice often considerably longer. The factors contributing to this include delays between referral from primary care to diagnostic specialists, waiting for investigations and the results of these, and in some situations a long wait for the pain clinic consultation itself.

During this period, patients often experience a variety of frustrations. They may see a number of clinicians and undergo tests which they expect to reveal the nature of their problem, but ultimately give no clear answers and they may even be given differing diagnoses by different doctors, furthering a sense of mistrust in clinicians. They may receive numerous unsuccessful treatments. Over the same period, their employment may come under threat or be lost, their recreations may be curtailed, their relationships suffer. Their clinicians may imply, or even directly state, that there is nothing wrong with them. In a recent study of patients with chronic back pain consulting specialists, it was found that patients valued explanation, information, reassurance, discussion of psychosocial issues, and management options, and (perhaps above all) being taken seriously.¹

This chapter is not intended to provide a comprehensive guide to history-taking and examination in the chronic pain patient, several aspects of which may be found in the relevant chapters on clinical situations.
(see Chapter 9, Chronic pain, impairment, and disability; Chapter 10, The psychological assessment of pain in patients with chronic pain; Chapter 14, Outcome measurement in chronic pain in the *Chronic Pain* volume of this series; and Chapter 3, Selecting and applying pain measures); nor is it intended to substitute for useful current texts on general clinical history-taking and examination to which the interested reader is referred.2, 3, 4 We will initially consider aspects of history-taking and examination generally applicable in the chronic pain patient, proposing a structure for the initial clinical interview and physical examination. We will focus on specific aspects of the clinical assessment in two important groups – nonspecific musculoskeletal pain and pain in disorders of the nervous system. Finally, we will explore the pain management psychologist’s approach to the clinical interview.

Obtaining a clear medical history and performing a physical examination are traditional clinical skills with the primary purpose of establishing diagnosis with a view to a rational basis for treatment. Advances in medical technology have challenged the importance of these traditional skills,5 but in recent years there has been a growing appreciation that the clinician’s first encounter with a patient should seek more than diagnosis. It can lay the foundations of a good doctor–patient relationship and impart, as well as receive, information. This has been referred to as the three-function model6 and might be seen as particularly appropriate in the context of chronic pain assessment; frequently, by the time a patient is referred to a pain clinic, the primary diagnosis, or diagnoses, will be clear. However, psychosocial issues are almost invariably important, and this is reflected in the coauthorship of a medical doctor and a clinical psychologist in the writing of this chapter.

Numerous questionnaires have been devised as tools to evaluate a wide range of sensory and affective elements of pain, as well as associated factors, such as physical disability and erroneous beliefs about pain causation. Some of these will be referred to later in this chapter; the subject is considered in greater depth in Chapter 10, The psychological assessment of pain in patients with chronic pain; Chapter 13, Psychological effects of chronic pain: an overview; and Chapter 14, Outcome measurement in chronic pain in the *Chronic Pain* volume in this series.

PHYSICIAN–PATIENT INTERVIEW

The patient attending a pain clinic consultation for the first time may have little idea what to expect from the service (by contrast, for example, with an appointment with a general physician). The clinician should be aware of this and it is often helpful at some point to ask the patient what his or her expectations are, concerning the assessment process as well as treatment, as this varies widely between individuals. Some expect a diagnosis (or a test that will lead to diagnosis); some just want their pain relieved. Some may have unrealistic expectations of what is achievable and it is as well for the clinician to be alerted to this early on.

Patients vary greatly in their ability to give a fluent, relevant, and thorough account of their symptoms. Some are quiet and unforthcoming, others garrulous, some distressed or angry. The clinician’s interviewing style needs to be adaptable and it is important for the clinician to be concerned, engaged, and calm. Simple courtesies should not be overlooked. The clinician should greet the patient formally; unless invited to do so, calling the patient by their first name is often regarded as inappropriately familiar by some patients.7

When starting to take a history, allow the patient to tell their story in their own words as far as possible, rather than continually interrupting with specific or leading questions. Later in the interview, garrulous patients may need to be “brought back on track” with some direct questioning, and unforthcoming patients may need gentle leading questions, but any guiding questions should be brief, clear, and initially as open as possible rather than suggesting a desired answer. This approach (the patient-centered interviewing technique)8, 9 allows the patient to place emphasis on those aspects of the problem that (s)he considers most important, and to feel “listened to.” This helps to build a rapport between patient and clinician and to empower the patient; it may also elicit more information than is obtained by enforcing a structure on the patient’s account of events.10

In contrast to the patient’s unstructured narrative, the clinician’s recording of the history needs to be logically structured. There is some evidence that the use of structured questionnaires may improve the quality of data collection and reduce the omission of important information.11 It may be helpful to use a printed form with headings for the recording of the history (and examination).

When the patient has completed telling their story of the main complaint, it is necessary to fill in the gaps and explore relevant symptoms in more detail by applying a more traditional “doctor-centered” interviewing technique, which can be structured as outlined below.

Pain history

The following aspects of the presenting painful condition should be noted largely in the context of establishing diagnosis.

- **Location.** This should be as precise as possible. It may be helpful to ask the patient to indicate the site and extent of the pain on a body line-drawing. In some conditions, the diagnosis may be made with near-certainty on the basis of this alone, for example, meralgia paresthetica. In other circumstances,
identifying the exact location of the pain may call into question a preconceived pain diagnosis – for example, a patient with multiple sclerosis and unilateral leg pain attributed to demyelinating myelopathy, but whose pain is restricted to a single dermatome, is more in keeping with a lumbar root lesion.

- **Onset.** Was this sudden, rapid, or insidious? Was there any identifiable precipitant?
- **Intensity.** Most patients attending a pain clinic will have pain that is of at least moderate intensity some of the time. Variations in intensity are important and duration and frequency of severe exacerbations should be noted.
- **Temporal pattern.** Is the pain constant/fluctuating/intermittent? Pain that is totally unremitting is often neuropathic, and if it additionally varies little, and is little influenced by anything the patient does, this may suggest a central origin.
- **Quality.** For example, is the pain sharp, aching, burning, or shooting. The patient should be encouraged to describe what he feels rather than applying a medical term that he may have heard (e.g. sciatica). Shooting, electrical, or burning sensations are characteristic of neuropathic pains, while nociceptive pains are more likely to be described as aching, dull, cramping, or throbbing. Some patients have considerable difficulty describing the quality of their pain and this is perhaps especially the case with some neuropathic pains; in this situation, the difficulty in finding appropriate words to describe the pain can itself be informative.
- **Current trend.** Is the pain evolving in its location or quality? Is it improving or deteriorating in intensity, or static?
- **Exacerbating/alleviating factors.** This refers to pain modifiers noticed by the patient, and not to treatments (which are considered separately below under Treatment history). Examples are exacerbation of back pain by spinal movement or loading, or of a painful extremity by light touch; or alleviation of back pain by lying flat or placing the painful extremity in cold water.
- **One pain or more?** Many patients have pain of more than one phenotype, and/or in more than one location, in which case all the features listed above should be obtained for each pain. This is of practical relevance; the patient with central poststroke pain may also have a painful frozen shoulder on the affected side which may be far more amenable to successful treatment than the neurogenic component of the pain.

The past pain history (if any) may conveniently be taken following the history of the presenting complaint. A previous history of pain with a similar character or location to the current symptoms may be particularly relevant if attributed to a serious cause.

Medical history

The medical history is important for several reasons in the patient with chronic pain. Enquiry should initially be made into the patient's general health. Apart from the value of this as a screening question to exclude serious morbidity, patients who consider themselves generally healthy may respond differently to a chronic pain condition than those with a history of chronic ill health.

Serious comorbidity may complicate or even contraindicate some pain treatment options. Particular hazards of systemic drug treatments may be posed by seriously impaired liver or kidney function. Some invasive treatments carry greater risk in patients with an increased bleeding tendency, either from a hemorrhagic disorder (e.g. thrombocytopenia, hemophilia) or anticoagulant treatment. Neuraxial nerve blocks, and some sympathetic blocks producing large regional vasodilatation, may be dangerous in patients with impaired cardiac reserve. Potent opioids should be used with caution in patients with severe chronic respiratory disease.

Many patients with diseases related or unrelated to their painful condition will be taking drugs long term which may potentially give rise to adverse interactions with pain medication.

Nonpain-contingent causes of disability, e.g. some neurological diseases, may limit attainable objectives of physical rehabilitation.

Treatment history

This can conveniently be divided into pharmacological treatments and other forms of treatment.

PHARMACOLOGICAL

All drug treatments for pain, present and past, should be documented. For each drug, information about the dosage given and duration of treatment should be sought, as well as the effect on the pain, side effects, and (in the case of past treatments) the reason why the drug was discontinued. Often patients with chronic pain will be taking drugs likely to produce dependence, especially opioids. The specific issue of substance abuse in the chronic pain patient is addressed in Chapter 46, Pain management and substance misuse in the *Chronic Pain* volume in this series.

Topical treatments should specifically be inquired about, as they may be overlooked by the patient; likewise, the patient should specifically be asked about complementary and alternative treatments, such as homeopathic medicines, vitamin and mineral supplements, and also herbal remedies which the patient may erroneously assume to be irrelevant. Many herbal medicines have pronounced pharmacological effects and interact with other drugs; St John’s Wort, in particular, is involved in
numerous drug interactions among which are the reduction in plasma levels of amitriptyline and carbamazepine. Some herbal medicines can also cause serious side effects in their own right, including allergic reactions, interference with coagulation, and hepatotoxicity.

Drugs used for reasons other than pain treatment should be recorded. Some are of particular relevance to the pain clinician, for example anticoagulant therapy in patients scheduled for injection treatment. The risk of adverse drug interactions should always be considered. It is impossible to remember them all; the British National Formulary (BNF) currently lists in the order of 2500 interactions, and the clinician should have ready access to a comprehensive and regularly updated reference source such as this. Some interactions are the result of enzyme induction or inhibition; for example, corticosteroids inhibit the metabolism of tricyclic antidepressants, and carbamazepine is an enzyme inducer that reduces the effect of coumarin anticoagulants and oral contraceptives.

The patient should be asked about allergies to drugs; the nature of any reported adverse reaction should be sought (many patients report allergy when in fact they have experienced a nonimmune-mediated adverse reaction, for example diarrhea following antibiotic therapy).

NONPHARMACOLOGICAL

This should include all physical therapies, with some description of the types of treatment given including forms of noninvasive stimulation, such as transcutaneous electrical nerve stimulation (TENS). The question, “Have you ever been to a pain clinic before?” may provide a useful starting point for discussing these treatments. Specific enquiry should be made as to whether the patient has seen a physiotherapist with particular experience in chronic pain management. Injection treatments should be documented, with details of exactly what was done if this is known to the patient.

Surgical procedures will probably be volunteered by the patient but should be asked about nevertheless, and nonpharmacological complementary and alternative treatments, such as acupuncture, should also be noted. In every case, the patient should be asked whether the treatment had any beneficial effect on the pain, and whether there were any ill effects.

The patient should also be asked whether they have seen a psychologist regarding their pain. This inquiry sometimes provokes a hostile response for which the clinician should be prepared; some tact is often required in the timing of this line of questioning, and it may be prudent to wait until later in the interview in case the patient raises the issue first.

Psychosocial history

This is invariably important in patients with chronic pain of any severity and the proportion of time allocated to it in the history-taking should reflect this. An appropriate starting point is the patient’s personal circumstances (Who is at home? Are you working? What is your job?). The clinician should ask specifically about the effect of the pain on activity and behavior – occupational, domestic, social, recreational, and sexual – as appropriate. (S)he should ask about effect and emotions (anxiety, depression, anger, frustration). These issues are addressed in more depth below under Psychological pain interview, but should at least be touched upon during the initial interview.

PHYSICAL EXAMINATION

During the interview

The physical examination should start as soon as the patient enters the consulting room, and continue throughout interview. Behaviors can be considered as valuable physical signs in the context of the chronic pain sufferer. Is the patient calm or agitated? Animated or “flat”? Does (s)he appear cheerful or sad? (If tearful at any point, note should be made of what appears to trigger this in the interview). Does the patient’s behavior seem appropriate? Does the patient appear comfortable in the interview chair, or restless? Is the patient well presented or unkempt? Does the patient present a lucid account of events or seem distracted, confused, drowsy, or intoxicated?

What terms does the patient use to describe symptoms? Are they largely descriptive without undue emotive dramatization (e.g. “It’s like having a bad toothache in your back”) or catastrophic (e.g. “It’s like a million wasps stinging me”) or attributional/medicalized (e.g. “It’s because the surgeon operated in the wrong place”)? I’ve got sciatica because the L4/5 disk is prolapsing and compressing the nerve root”?

It is often informative to observe the patient’s behavior while preparing to be examined (rising from the interview chair, walking to and getting onto the examination couch, etc.). Note whether there is elaborated behavior of disability or distress.

Formal physical examination

The majority of chronic pain problems presenting to pain clinics have their origin in the musculoskeletal system and the nervous system, and due emphasis is accordingly given to the examination of these two systems. The scope of the examination deemed necessary is determined partly by the nature of the presenting problem, and partly by the source of referral. A patient with typical postherpetic neuralgia who is otherwise entirely well probably does not need complete systematic examination. A patient referred from a medical generalist in primary care should probably undergo a comprehensive examination at first attendance;
a more focused examination is appropriate if the patient has been assessed by a specialist in the field of the patient’s disorder.

CHRONIC PAIN IN DISORDERS OF THE MUSCULOSKELETAL SYSTEM: ADDITIONAL NOTES

This group of conditions includes diseases such as rheumatoid arthritis and ankylosing spondylitis, which have clear diagnostic criteria, a relatively well-understood pathology and well-established treatments, some of which are fairly disease-specific (e.g. gold injections for rheumatoid disease). These diseases are usually readily recognized by medical generalists, reflecting their high profile in teaching at medical school, and if referral to a specialist is deemed necessary, this will usually be a rheumatologist in the first instance. In contrast, conditions such as nonspecific back pain and myofascial pain, which are undoubtedly more common, receive little attention in undergraduate medical teaching and general medical practitioners may be less confident in the assessment and treatment of these cases than they are with the primary inflammatory arthropathies.

The following key questions/features apply to chronic back/spinal pain, as follows.

Key questions in the history

- Elicit risk factors for serious spinal pathology (red flags) (see Chapter 37, Chronic back pain in the *Chronic Pain* volume in this series).
- Is the pain midline or to one side?
- Was there an initiating event?
- What factors influence the pain?
- Does the pain radiate into one or both lower limbs?
- Are there deficits of sensation/power of the lower limbs?
- What activities does the pain restrict/prevent?

Key features of the examination

The patient needs to be examined adequately undressed and in good lighting. Remember to ask the patients’ permission to touch them before doing so, and tell them what you intend to do before you do it.

Look for:

- stigmata of specific rheumatological disease, e.g. osteoarthritis;
- abnormalities of posture/gait, and fixed deformity (inspect from the back to detect scoliosis, from the side to detect abnormality of the cervical and lumbar lordoses and thoracic kyphosis);
- general level of fitness (muscular development, obesity);
- scars of previous surgery;
- abnormalities of skin and subcutaneous soft tissue – e.g. erythema *ab igne* from prolonged application of local heat, loss of lumbar paraspinal muscle bulk from disuse.

- range of movement (flexion, extension, lateral bending, rotation). Test with patient’s hips and feet in alignment.
- antalgic movements and distress behavior.

Feel for:

- local tenderness/swelling/heat;
- myofascial tender points.

Test additionally for:

- straight leg raise. Dorsiflexion of the foot characteristically increases the pain of radicular compression, as does flexing the hip with the knee bent and then extending the knee (Lasegue’s test). Reduced straight leg raise is generally regarded as having high sensitivity for lumbar disk herniation but poor specificity, although a recent publication suggests that both sensitivity and specificity are lower than previously believed, and that these maneuvers add little to the information gained from the history.
- sacroiliac joint stressing tests for buttock pain;

It is suggested that discogenic pain is significantly correlated with pain centralization on repetitive movement testing, lumbar facet joint pain with absence of provocation when rising from sitting, and sacroiliac pain with specific mechanical stressing. However, high degrees of disability and distress may be associated with reduced specificity of provocative tests of spinal pain and complicate their interpretation (see below under Over-reaction and related issues).

CHRONIC PAIN IN DISORDERS OF THE NERVOUS SYSTEM: ADDITIONAL NOTES

Chronic pain associated with disorders of the nervous system may be nocigenic (usually musculoskeletal) or neuropathic. The reader is referred to Chapter 24, Pain in neurological disease in the *Chronic Pain* volume in this series, for a fuller discussion of this. In addition to the general aspects of history-taking and examination, the clinical assessment of this group of patients should aim to establish:

- the primary neurological diagnosis;
- whether there is a single pain phenotype or more than one;
- for each pain phenotype, whether the pain is nocigenic or neuropathic;
- for each neuropathic pain phenotype, whether the lesion(s) is peripheral or central.

In some cases, the primary diagnosis will be clearly established by the time the patient presents to the pain clinic. In other cases it may be suspected but unproven, or...
frankly obscure. However, in every case the clinician should seek to establish the likely cause of the pain, not only in terms of primary diagnosis, but in terms of broad pathophysiological mechanisms of pain generation. Some neurological conditions, such as trigeminal neuralgia, produce a highly stereotyped pain syndrome. Others, such as multiple sclerosis, may give rise to a broad range of phenotypically diverse clinical pains with a variety of putative pain-generating mechanisms.

In the patient with an established neurological disease, it is likely that he will have been seen by a neurologist and undergone a thorough general neurological examination. However, the examination may not have been closely focused on abnormalities of sensation, which are important in neuropathic pain.

Key questions in the history

- Is the pain in an area of sensory deficit?
- Are there elements of burning or shooting/electrical sensations?
- Is there accompanying paresthesia or dysesthesia? This includes Lhermitte's phenomenon, a widely spreading paresthesia provoked by neck flexion and characteristic of multiple sclerosis (see Chapter 24, *Pain in neurological disease in the Chronic Pain volume in this series*).
- Are there associated abnormalities, past or present, of altered color, temperature, or sweating, edema or dystrophic changes?
- Is there allodynia (pain evoked by stimulation that is normally innocuous, like light touch)?
- Is there hyperalgesia (supranormally intense perception of stimulation that is normally painful, like pinprick)?
- Is there hyperpathia (increased somatosensory detection threshold, with development of pain of increasing intensity with repetitive or sustained stimulation – this is pathognomonic of neuropathic pain)?
- Is there an associated movement disorder?

Key features of physical examination

Look for:

- abnormalities of posture or gait;
- abnormal involuntary movement;
- focal wasting;
- local changes of color or swelling.

Feel for:

- locally altered temperature/sweating;

Test (sensory) for:

- light touch – deficit/allodynia;
- warm/cool – deficit/allodynia;
- pinprick – deficit/hyperalgesia;
- proprioception/vibration;
- movement- or pressure-evoked sensation (if appropriate to presentation) – e.g. Tinel’s test (paresthesia in the hand/fingers provoked by percussion over the median nerve at the wrist in carpal tunnel syndrome).

Full quantitative sensory testing utilizes specialized techniques and is not part of routine physical examination. However, some basic equipment for semi-quantitative sensory testing (von Frey filaments, constant temperature rollers for non-noxious warm and cold) can be considered routine clinical tools in this group of patients and are valuable assets in assessing both sensory deficits and hypersensitivity phenomena.

OVER-REACTION AND RELATED ISSUES

Much emphasis has been placed on some aspects of behavior in chronic pain patients which are commonly cited as evidence of either a psychogenic basis of the pain, conscious symptom exaggeration, or even frank malinger. As a general rule, these conclusions are not justified. However, they may usefully draw attention to the probability of prominent psychosocial issues.

Examples of the types of presentation and behavior liable to make this sort of impression on the attending clinician are:

- “accoutrements of disability” without an obvious objective need – crutches, dark glasses, wheelchair, etc;
- florid displays of distress during the history-taking and (especially) examination – wincing, groaning, and slow, antalgic movement;
- “nonorganic signs,” such as those cited by Waddell and colleagues. These are grouped into the following categories:
 - tenderness – e.g. widespread superficial tenderness to light palpation over the lumbar spine;
 - simulation, e.g. “rotating” the spine with the shoulders and pelvis remaining in the same plane;
 - distraction, e.g. wide disparity between sitting and supine straight leg raise;
 - regional disturbance, e.g. “give way” weakness or nondermatomal sensory loss.
- over-reaction, e.g. slow movement, grimacing, and sighing.

It should be emphasized that Waddell’s signs are indicators of distress, not evidence of malingering or absence of a genuine cause for the pain.
PSYCHOLOGICAL PAIN INTERVIEW

As with the taking of the medical history, there are multiple objectives involved in the psychological pain interview. Obviously one is attempting to obtain clear, factual information relating to the patient’s pain history – what was done, when, by whom, and to what outcome. However, it is more than that. As was noted above, patients have a need to “tell their story” and allowing them to do that tends to lead to better outcomes.\(^\text{19}\) The psychological pain interview should also gain an understanding of how the patient understands his or her pain – to find out how they think about the problem which has brought them to your office. This may involve the verbalization of thoughts and understandings which have hitherto been only implicit, never been made public before, even to the speaker. Finally, unlike the medical assessment, the psychological pain interview is also often the first step in a process of engagement in a treatment model which is unfamiliar at best. The challenge is to achieve all of these objectives in the time limitation that all clinicians observe – no easy task.

How one goes about the psychological pain interview also depends to some extent upon the basis on which it is conducted. It might be the second or third in a series of assessments that the patient has been through in the one visit, having been seen by the pain specialist and perhaps a physiotherapist or nurse, prior to a team case conference. It might be an assessment that has followed from a referral from the pain specialist who has been treating the patient from within the same service, in the same building, with ready access to shared notes and “corridor case discussions.” Or the assessment might be a stand-alone affair, the result of a referral from one practitioner to another working in physically and organizationally disparate services. Generally speaking, the more remote one is from the interdisciplinary team assessment format, the more reliant one is upon information obtained from the psychological assessment in order to generate a treatment formulation.

The interview is also shaped to some extent by the amount of information obtained from psychometric assessment as part of the assessment process. The more extensive the questionnaire battery, the more latitude there is in the interview to explore areas in greater detail. See Chapter 9, Chronic pain, impairment, and disability; Chapter 10, The psychological assessment of pain in patients with chronic pain; Chapter 14, Outcome measurement in chronic pain in the *Chronic Pain* volume in this series; and Chapter 3, Selecting and applying pain measures for a full discussion of self-report assessment instruments in chronic pain. Inclusion of the partner is an invaluable aid to the assessment process, as this offers the opportunity of obtaining a different perspective on the patient’s coping ability, a second interpretation of the impact of pain on family life, and a chance to observe directly some of the behavioral interactions known to maintain pain-related disability.\(^\text{20}\)

Content

There is often cause for concern when clinicians are carrying out sequential interdisciplinary assessments that patients are being asked the same questions by each team member. While there is obviously the potential for redundancy and a loss of rapport with the patient (“I already told the last guy all of this!”), judicious use of common questioning can be valuable. Occasionally a second prompt helps a patient to recall information that they had forgotten or neglected to give the first time. It may also be that with greater trust or rapport with one clinician, the patient feels more comfortable to divulge information. Inconsistent responses to the same kinds of questions can also alert the clinical team to a patient who is not giving honest answers to unambiguous questions. Finally, most patients with chronic pain will expect to be asked questions about pain modulators, treatments undertaken, and so on. Covering this familiar territory early on can help to build rapport, particularly with patients who may be skeptical if not overtly hostile about the role of a clinical psychologist in the pain treatment team.

There is no definitive set of questions that should comprise the psychological interview. However, the following topic areas represent a broad set of categories for exploration in conjunction with the medical history. The clinical psychologist may also need to begin the interview with a brief explanation of the nature of pain psychology. It can be worthwhile to state openly that the purpose of the assessment is not to expose the underlying psychological causes of pain, but to explore how the persistent pain problem has impacted upon various life areas (as it so often does), so that optimum treatment plans can be developed. It can also be useful at the outset to invite the patient to change position during the interview (stand, lean against the wall, pace the room), rather than continue sitting in discomfort. Not only does this invitation help to build rapport, it is a tacit acceptance of the reality of the patient’s pain.

PAIN HISTORY

Information about the onset of the pain, diurnal variations, modulators of pain, and in particular what the patient does (and does not do) in response to pain flare-ups, are important and expected components of the assessment. In particular, the pain psychologist should be looking for behavioral contingencies that may be influencing disability, such as positive or negative reinforcement for pain behavior.\(^\text{21}\)

Past treatment, current treatments, and expectations of future treatment should be assessed. Use of pain medications, their perceived benefits and any identified side effects should be noted. Alcohol and other drug use (especially marijuana) are important to assess, as this information may not be freely offered, but may impact upon treatment significantly.
UNDERSTANDING OF PAIN MECHANISMS

Both the patient and the partner should be asked questions such as “Why do you think that this pain has persisted X months/years after it originally started?” Concerns about undetected but sinister disease processes are particularly important.

Beliefs about the risk of further damage through normal movement and gentle exercise should also be elicited, as any physical therapy that is proposed will need to be accommodated in this.

DAILY ROUTINE

Time to bed, time out of bed, the elements of a typical day and evening, and how the current routine compares to premorbid activity levels are important. For the non-working patient who describes his or her day as “just pottering about at home,” several key follow-up questions include: How many household chores are still your responsibility? Other than to attend medical appointments, how often do you leave the house? How much time during the typical day do you spend lying down?

WORK

A brief vocational history provides useful information not only about the impact of pain on psychosocial functioning, but also about the patient’s expectations and beliefs. Determining the educational level obtained, the type of work being done at the time of injury, whether work was sustained or discontinued because of pain, attempts to return to work and their outcome, and future expectations for work are important assessment questions.22 In particular, for patients in receipt of financial support for not working, a careful exploration of the incentives for returning to work should be made.

IMPACT OF PAIN ON FAMILY LIFE

Following on from the above, specific inquiry should be made as to how roles within the family have changed since the onset of the pain and how the family has adjusted to those changes.23 What does the spouse do more of now, as well as less of now, because of pain? How has communication changed within the relationship? What about intimacy – not just sexual activity, but physical and emotional closeness? Clearly, the responses given to these questions must be interpreted in the context of the premorbid relationship quality.

PSYCHOLOGICAL DISORDERS

By leaving direct questioning about depression, anxiety, and other psychological disorders until relatively late in the interview, the clinician has had a chance to build enough trust and rapport with the patient to obtain unguarded responses. Screening for current mood disorders, as well as obtaining a history of mental health, is important for treatment planning. It is often useful to find out about previous exposure to psychological or psychiatric treatment, as negative personal experiences of such treatment can create significant barriers to engaging in any future intervention. Further discussion of the issues concerning the assessment of psychopathology in the context of chronic pain is given in Chapter 13, Psychological effects of chronic pain: an overview in the Chronic Pain volume in this series, as well as Chapter 3, Selecting and applying pain measures.

SOCIAL HISTORY

A brief childhood and family history can shed light on developmental issues which may be relevant for future treatment – for example, a family history of depression, childhood abuse or neglect, attention deficit disorder, or other early psychobehavioral disorders, even family responses to illness during childhood, may all be fruitful areas for evaluation.

INTERPERSONAL SKILLS

The pain psychology assessment is not concerned solely with analyzing information given by the patient, but with how that information is given. Displays of pain behavior should of course be noted, but the careful clinician will try to observe when those behaviors occur to determine whether patterns can be detected. They may happen during discussion of more emotionally challenging topics, or after a prolonged period of immobility, or at the beginning of the interview, but not towards the end. Attention should also be paid to the patient’s communication skills as these might shed light on any relationship difficulties discussed, or need to be taken into account when considering a group-based treatment program.

As a final point, by definition, taking a history is an exercise in retrospection – what happened, when, and why. However, the first contact with a pain psychologist is often the starting point to a new treatment direction. The assessment often marks the ending of medical efforts to find sustainable pain relief, and the beginning of a self-management model of pain – which might be an entirely foreign concept to the patient. For this reason, the emphasis in the assessment should err on the future rather than retelling the past. The clinician really wants to know what the patient thinks about where to go next, rather than where he or she has been before.

CONCLUSIONS

Skilled history-taking and physical examination are important in the assessment of the chronic pain patient;
however, there are some differences of emphasis between the main objectives of history-taking and examination in these patients compared with most primary medical specialties. Patient-, as well as doctor-centered interviewing is desirable for optimum gathering of information and for establishing a productive clinician–patient relationship.
REFERENCES

Toth J. Old weather sayings are rational – and here’s their rationale. 1979; 50: 70–3.
Dannecker EA, George SZ, Robinson ME. Influence and stability of pain scale anchors for an investigation of cold pressor pain tolerance. 2007; 8: 476–82.
Robinson ME, George SZ, Dannecker EA et al. Sex differences in pain anchors revisited: further investigation of “most intense” and common pain events. 2004; 8: 299–305.

Jensen MP, Turner JA, Romano JM. What is the maximum number of levels needed in pain intensity measurement?. Pain 1994; 58: 387–92.

Challapalli V, Tremont-Lukats IW, McNicol ED et al. Systemic administration of local anesthetic agents to relieve neuropathic pain. 2005; CD003345.

Galer BS. Peak pain relief is delayed and duration of relief is extended following intravenous phentolamine infusion. Preliminary report. 1995; 20: 444–7.

Galer BS. Peak pain relief is delayed and duration of relief is extended following intravenous phentolamine infusion. Preliminary report. 1995; 20: 444–7.

Price DD, Mayer DJ, Mao J, Caruso FS. NMDA-receptor antagonists and opioid receptor interactions as related to analgesia and tolerance. 2000; 19 (Suppl. 1): S7–11.

Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. 1996; 77: 441–4.

Bell RF, Eccleston C, Kalso E. Ketamine as adjuvant to opioids for cancer pain. A qualitative systematic review. 2005; 26: 867–75.

Targoff IN. Laboratory testing in the diagnosis and management of idiopathic inflammatory myopathies. 2002; 28: 859–90.

Falk RJ, Jennette JC. Thoughts about the classification of small vessel vasculitis. Kidney Int 2004; 65: 1124–33.

Naliboff BD, Mayer EA. Brain imaging in IBS: drawing the line between cognitive and non-cognitive processes. *Current Opinion in Gastroenterology* 2006; 130: 267–70.

The Pain Society. Available from: www.britishpainsociety.org/pub_professional.htm/opioids

Katon W, Sullivan MD. Depression and chronic medical illness.

Holroyd J. Hypnosis treatment of clinical pain: understanding why hypnosis is useful.

Miller ME, Bowers KS. Hypnosis analgesia: dissociated experience or dissociated control?

Hargadon R, Bowers KS, Woody EZ. Does counterpain imagery mediate hypnotic analgesia?

Jensen M, Patterson DR. Hypnotic treatment of chronic pain.

Hilgard JR, LeBaron S. Relief of anxiety and pain in children and adolescents with cancer: quantitative measures and clinical observations.

Zeltzer L, LeBaron S. Hypnosis and non-hypnotic techniques for reduction of pain and anxiety during painful procedures in children and adolescents with cancer.

Montgomery GH, Bovbjerg DH, Schnur JB et al. A randomized clinical trial of a brief hypnosis intervention to control side effects in breast surgery patients.

Patterson DR, Wiechman SA, Jensen M, Sharar SR. Hypnosis delivered through immersive virtual reality for burn pain: A clinical case series.

Morgan AH, Hilgard ER. Age differences in susceptibility to hypnosis.

Spiegel D, Bierre P, Rootenberg J. Hypnotic alteration of somatosensory perception.

Crawford HJ, Gur RC, Skolnick B et al. Effects of hypnosis on regional cerebral blood flow during ischemic pain with and without suggested hypnotic analgesia.

Kosslyn SM, Thompson WL, Costantini-Ferrando MF et al. Hypnotic visual illusion alters color processing in the brain.

Frid M, Singer G. Hypnotic analgesia in conditions of stress is partially reversed by naloxone.

Goldstein A, Hilgard ER. Failure of the opiate antagonist naloxone to modify hypnotic analgesia.

Spiegel D, Albert LH. Naloxone fails to reverse hypnotic alleviation of chronic pain.

McCracken LM. A contextual analysis of attention to chronic pain: what the patient does with their pain may be more important than their awareness or vigilance alone. Pain 2007; 8: 230–6.

Ellis A. Reason and emotion in psychotherapy. Secaucus, NJ: Birch Lane.

Arntz A, Claasens L. The meaning of pain influences its experienced intensity.
Cipar DJ, Fernandez E. Expectancy variables predicting tolerance and avoidance of pain in chronic pain patients.
Waddell G, Newton M, Henderson I et al. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability.

Richardson C, Maclver K, Wright M, Wiles JR. Patient reports of the effects and side-effects of TENS for chronic non-malignant pain following a four week trial. 疼痛研究进展. 2002; 13: 265–76.

Carroll D, Tramer M, McQuay H et al. Randomization is important in studies with pain outcomes: systematic review of double

Kaptchuk TJ, Stason WB, Davis RB et al. Sham device v inert pill: randomised controlled trial of two placebo treatments. ประกาศ 2006; 332: 391–7.

Han JS. Acupuncture and endorphins. 2004; 361: 258–61.

Han JS. Acupuncture and endorphins. 2004; 361: 258–61.

Han JS. Acupuncture and endorphins. 2004; 361: 258–61.

Reviews

Schonstein E, Kenny DT, Keating J, Koes BW. Physical conditioning programs for workers with back and neck pain: a Cochrane system

Moseley L. Unraveling the barriers to reconceptualization of the problem in chronic pain: the actual and perceived ability of patients and health professionals to understand the neurophysiology. Pain. 2003; 4: 184–9.

Fransen M, McConnell S, Bell M. Exercise for osteoarthritis of the hip or knee. Cochrane Database of Systematic Reviews 2003; CD004286.

Busch A, Schachter CL, Peloso PM, Bombardier C. Exercise for treating fibromyalgia syndrome. Cochrane Database of Systematic Reviews 2002; CD003786.

van Tulder MW, Koes BW, Assendelft WJ et al. [Chronic low back pain: exercise therapy, multidisciplinary programs, NSAID’s, back schools and behavioral therapy effective; traction not effective; results of systematic reviews]. Tijdschr Geneeskd. 2000; 144: 1489–94.

Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. *Anesthesiology*. 1996; 64: 357–64.

Simpson KH. Report from a meeting to consider the use of diamorphine in totally implantable intrathecal pumps. 2004; Summer: 10–11.

Hopwood MB, Abram SE. Factors associated with failure of epidural steroids. 1993; 18: 238–43.

Huntoon MA, Martin DP. Paralysis after discectomy may predispose to infection. Anesthesiology. 1998; 88: 119–22.

Cousins MJ. An additional dimension to the efficacy of epidural steroids. Anesthesiology. 2000; 93: 565.

Hogan QH. Epidural anatomy examined by cryomicrotome section. Anesthesiology. 1993; 79: 178–89.

Hogan QH. Epidural anatomy examined by cryomicrotome section. Anesthesiology. 1996; 80: 661–7.

Sharps LS, Isaac Z. Percutaneous disc decompression using nucleoplasty.

Richardson J, Kalkeawaard JW, Groen GJ. Spinal endoscopy for chronic sciatica.

Saifuddin A, Braithwaite I, White J et al. The value of lumbar spine magnetic resonance imaging in the demonstration of annular tears.

Derby R, Kim BJ, Lee SH et al. Comparison of discographic findings in asymptomatic subject discs and the negative discs of chronic LBP patients: can discography distinguish asymptomatic discs among morphologically abnormal discs?

Sharps LS, Isaac Z. Percutaneous disc decompression using nucleoplasty(r).

Subramaniam K, Subramaniam B, Steinbrook R. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. *Anesthesiology* 2004; 99: 482–95.
Morton NS. Ketamine is not a safe, effective, and appropriate technique for emergency department paediatric procedural sedation. 2004; 21: 272–3.

Llewellyn N, Moriarty A. The national pediatric epidural audit. 2007; 17: 520–33.

Allan CY, Jacquelin PA, Shubhda JH. Caudal epidural block versus other methods of postoperative pain relief for circumcision in boys. 2003; CD003005.

Thornton KL, Sacks MD, Hall R, Bingham R. Comparison of 0.2% ropivacaine and 0.25% bupivacaine for axillary brachial plexus blocks in paediatric hand surgery. 2003; 13: 409–12.

Ernst E, Resch KL. Concept of true and perceived placebo effects. *Journal of Clinical Epidemiology* 1995; 311: 551–3.

Ernst E, Resch KL. Concept of true and perceived placebo effects. *Journal of Clinical Epidemiology* 1995; 311: 551–3.

Ernst E, Resch KL. Concept of true and perceived placebo effects. *Journal of Clinical Epidemiology* 1995; 311: 551–3.

Ioannidis JP. Effect of the statistical significance of results on the time to completion and publication of randomized efficacy trials. *Ann Intern Med* 1998; 279: 281–6.

Cameron CM, Scott DA, McDonald WM, Davies MJ. A review of neuraxial epidural morbidity: experience of more than 8,000 cases at a single teaching hospital. 2007; 106: 997–1002.

Sanders MK, Michel MZM. Acute pain services – How effective are we? 2002; 57: 927.

Rosen R. Such teams deserve a trial of efficacy and cost (correspondence). *British Journal of Anaesthesia* 1997; 71: 1346.

Russell RCG. Royal College of Surgeons has training programme for surgical trainees. *British Journal of Anaesthesia* 1997; 71: 1346.

Sutherland PW, Smith AH, Cooper P. Introducing the postoperative care team. *Anaesthesia* 2002; 57: 183.

and trauma.

Maruta T, Swanson DW, McHardy MJ. Three year follow-up of patients with chronic pain who were treated in a multidisciplinary pain management center. Anaesthesist. 1990; 41: 47–53.

Collaboration

Gatchel RJ, Oordt MS. Turk DC, Melzack R (eds). 23: 129

Committee.

Quality improvement guidelines for the treatment of acute pain and cancer pain. American Pain Society Quality of Care

Bolam v Friern Barnet. [1957] 2 AER 118.

