The most profound dilemma in assisted reproduction to date is the inability to recognize potentially viable embryos before their replacement into the reproductive tract. Application of increasingly advanced new technology has allowed the field of embryo evaluation to evolve rapidly and dramatically over the past five years.

Human Preimplantation Embryo Selection assembles the leaders in the field of assisted reproduction to discuss their visions of dealing with the topic of embryo selection in the light of the limitations involving the fragility of the early human embryo. The purpose of this book is to shed light on the ever-expanding techniques that are being employed and evaluated with regard to embryo selection. A comprehensive overview may guide the ART practitioner in choice of techniques and evaluation of benefits and drawbacks.

This book will provide an up-to-date overview and reference source: an invaluable tool for assisted reproductive practice worldwide.
Human Preimplantation Embryo Selection
REPRODUCTIVE MEDICINE & ASSISTED REPRODUCTIVE TECHNIQUES SERIES

Series Editors
David K Gardner DPhil
Colorado Center for Reproductive Medicine, Englewood, CO, USA

Jan Gerris MD PhD
Professor of Gynecology, University Hospital Ghent, Ghent, Belgium

Zeev Shoham MD
Director, Infertility Unit, Kaplan Hospital, Rehovot, Israel

Published Titles
Gerris, Delvigne and Olivennes, *Ovarian Hyperstimulation Syndrome*
ISBN 978 1842143285

Sutcliffe, *Health and Welfare of ART Children*
ISBN 9780415379304

Tan, Chian and Buckett, *In-vitro Maturation of Human Oocytes*
ISBN 1842143322

Keck, Tempfer and Hugues, *Conservation Infertility Management*
ISBN 978 0415384513

Pellicer and Simón, *Stem Cells in Human Reproduction*
ISBN 978 0415397773

Forthcoming Titles
Tucker and Liebermann, *Vitrification in Assisted Reproduction*
ISBN 978 0415408820

Aplin, Fazleabas, Glasser, Giudice, *The Endometrium, second edition*
ISBN 978 0415385831
Human Preimplantation
Embryo Selection

Edited by

Kay Elder MD PhD
Bourn Hall Clinic
Cambridge
UK

Jacques Cohen PhD
Reprogenetics and Tyho–Galileo Research Laboratories
Livingston, NJ
USA
Contents

List of contributors vii
Preface xi
Acknowledgments xiii

Section I: Morphology

1. Human oocyte and embryo assessment for ART
 A Henry Sathananthan and Sulochana Gunasheela 1

2. The zona pellucida and markers of oocyte and embryo viability
 Anette Gabrielsen and Svend Lindenberg 15

3. Morphology and kinetics of human pronuclei
 Jan Tesarik, Raquel Mendoza-Tesarik, Ermanno Greco, and Carmen Mendoza 21

4. Human pronuclei as a mode of predicting viability
 Aidita N James 31

5. Multinucleation and mosaicism in the human preimplantation embryo
 Renee Walmsley 41

6. The origins and consequences of fragmentation in mammalian eggs and embryos
 Mina Alikani 51

7. Analysis of blastocyst morphology
 David K Gardner, John Stevens, Courtney B Sheehan, and William B Schoolcraft 79

8. Morphometric analysis of human embryos
 Christina Hnida and Søren Ziebe 89

9. Development rate, cumulative scoring, and embryonic viability
 Christine C Skiadas and Catherine Racowsky 101

10. Human embryo cryopreservation and its effects on embryo morphology
 James J Stachecki and Klaus Wiemer 123

11. Manipulating embryo development
 Jacques Cohen 135

Section II: Metabolism and Immunology

12. Assessment of soluble human leukocyte antigen G in human embryos
 Jeffrey D Fisch, Levent Keskintepe, and Geoffrey Sher 145
CONTENTS

13. Immunological aspects of embryo development
 Carol M Warner
 155

14. Nitric oxide regulation of the preimplantation embryo
 Yvette M Huet-Hudson
 169

15. Uptake and release of metabolites in human preimplantation embryos
 Fabienne Devreker
 179

16. Preimplantation embryo metabolism and embryo interaction with the in vitro environment
 Yves J R Ménézo and Pierre Guérin
 191

Section III: Genetic Aberrations and Embryo Selection

17. Polar body chromosome abnormalities and their consequences for human embryo development
 Anver Kuliev and Yury Verlinsky
 201

18. Chromosomal status of human embryos
 Santiago Munné and Luca Gianaroli
 209

19. Genomic imprinting and consequences for embryonic development
 Henry E Malter
 235

20. Selection of viable embryos and gametes by rapid, non-invasive metabolomic profiling of oxidative stress biomarkers
 James T Posillico and The Metabolomics Study Group for Assisted Reproductive Technologies
 245

21. Gene expression analysis in the human oocyte and embryo
 Nury M Steuerwald
 263

22. Mitochondria in reproduction: future assays for embryo selection
 Brian Dale, Loredana Di Matteo, and Martin Wilding
 275

23. Future genetic and other technologies for assessing embryos
 Dagan Wells
 287

Section IV: Pre-Fertilization Parameters

24. Oocyte selection in contemporary clinical IVF: do follicular markers of oocyte competence exist?
 Jonathan Van Blerkom and Susan W Trout
 301

25. Sperm DNA and embryo development
 Denny Sakkas and Emre Seli
 325

26. The sperm centriole: its effect on the developing embryo
 Calvin R Simerly and Christopher S Navara
 337

Index
 355
Contributors

Mina Alikani PhD
Tyho-Galileo Research Laboratories
Livingston, NJ
USA

Jacques Cohen PhD
Reprogenetics and Tyho–Galileo Research Laboratories
Livingston, NJ
USA

Brian Dale PhD DSc
Director of Research
Centre for Reproductive Biology
Clinica Villa del Sole
Naples
Italy

Fabienne Devreker MD PhD
Clinic of Fertility
Hospital Erasme
Brussels
Belgium

Loredana Di Matteo BSc
Facolta di Medicina e Chirurgia
II Università degli Studi di Napoli
Naples
Italy

Kay Elder MD PhD
Boum Hall Clinic
Cambridge
UK

Jeffrey D Fisch MD FACOG
Sher Institute for Reproductive Medicine
Las Vegas, NV
USA

Anette Gabrielsen
Ciconia Research and Development Aps
Copenhagen
Denmark

David K Gardner DPhil
Scientific Director
Colorado Center for Reproductive Medicine
Englewood, CO
USA

Luca Gianaroli MD
Reproductive Medicine Unit
Italian Society for the Study of Reproductive Medicine
Bologna
Italy

Ermanno Greco MD
Center of Assisted Reproduction
European Hospital
Rome
Italy

Pierre Guérin PhD
Ecole Véténaires Lyon
Marcy l’etoile cedex
France
LIST OF CONTRIBUTORS

Sulochana Gunasheela MD FRCOG
Gunasheela IVF & Research Center
Bangalore
India

Christina Hnida, Cand Scient PhD
Laboratory Director
The Fertility Clinic
Herlev Hospital
Copenhagen
Denmark

Yvette M Huet-Hudson PhD
Professor of Biology
University of North Carolina at Charlotte,
Charlotte, NC
USA

Aidita N James PhD
Associate Laboratory Director
The A.R.T. Institute of Washington, Inc.
Walter Reed Army Medical Center
Washington, DC
USA

Svend Lindenberg
The Fertility Clinic
Herlev University Hospital
Copenhagen
Denmark

Levent Keskinetpe PhD HCLD
Executive Laboratory Director
Sher Institute for Reproductive Medicine
Las Vegas, NV
USA

Anver Kuliev MD PhD
Reproductive Genetics Institute
Chicago, IL
USA

Henry E Malter PhD HCLD
Scientific and Laboratory Director
Tower Fertility Center
Hackensack, NJ
USA

Yves J R Ménézo PhD Dsc.
TC Laboratoire de Procréation médicalement assistée
Clinique du val d’Ouest
Ecly cedex
France

Carmen Mendoza PhD
Department of Biochemistry and Molecular Biology
University of Granada
Granada
Spain

Raquel Mendoza-Tesarik
MAR & Gen Clinic
Granada
Spain

Santiago Munné PhD
Reprogenetics
Livingston, NJ
USA

Christopher S Navara PhD
Assistant Professor, Pittsburgh Development Center of
Magee-Womens Research Institute
University of Pittsburgh Medical School
Pittsburgh, PA
USA

James T Posillico
Brigham and Women’s Hospital
Boston
USA
Catherine Racowsky PhD
Department of Obstetrics and Gynecology
Brigham and Women’s Hospital
Boston, MA
USA

Denny Sakkas PhD
Associate Professor
Yale University School Medicine
New Haven, CT
USA

A Henry Sathananthan
Monash Immunology and Stem Cell Laboratories
Melbourne
Australia

William B Schoolcraft MD
Medical Director
Colorado Center for Reproductive Medicine
Englewood, CO
USA

Emre Seli MD
Yale University School of Medicine
New Haven, CT
USA

Courtney B Sheehan
Colorado Center for Reproductive Medicine
Englewood, CO
USA

Geoffrey Sher MD FACOG
University of Nevada
School of Medicine
Reno, NV
USA

Calvin R Simerly PhD
Pittsburgh Development Center of Magee-Womens
Research Institute
University of Pittsburgh Medical School
Pittsburgh, PA
USA

Christine C Skiadas MD
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA
USA

James J Stachecki PhD
Tyho-Galileo Research Laboratories
Livingston, NJ
USA

Nury M Steuerwald PhD
A.R.T. Institute of New York and New Jersey, NJ
USA
and
University of North Carolina at Charlotte
Charlotte, NC
USA

John Stevens
Colorado Center for Reproductive Medicine
Englewood, CO
USA

Jan Tesarik
MAR&Gen Clinic
Granada
Spain
LIST OF CONTRIBUTORS

Susan W Trout
Colorado Reproductive Endocrinology
Rose Medical Center
Denver
Colorado, CO
USA

Jonathan Van Blerkom PhD
University of Colorado
Boulder
Colorado, CO
USA

Yury Verlinsky PhD
Reproductive Genetics Institute
Chicago, IL
USA

Renee Walmsley
Institute for Reproductive Medicine and Science at Saint Barnabas Medical Center
Livingston, NJ
USA

Carol M Warner PhD
Matthews Distinguished Professor of Biology
Northeastern University
Boston, MA
USA

Dagan Wells PhD
Yale University Medical School
New Haven, CT
USA

Klaus Wiemer PhD
Northwest Center for Reproductive Sciences
Kirkland, WA
USA

Martin Wilding PhD
Centre for Reproductive Biology
Clinica Villa del Sole
Naples
Italy

Soren Ziebe
Laboratory Director
The Fertility Clinic
Rigshospitalet
Universitj Hospital of Copenhagen
Copenhagen
Denmark
Preface

Assisted reproductive technology (ART) is a numbers game, with permutations that involve the transfer of multiple embryos... but the most important number in IVF is of course the number one. One embryo, one sac, one fetus and one healthy baby – the ability to choose just one embryo that will lead to the successful birth of a baby is what we all crave in our profession. Seeking just this is the name of the game, the “Holy Grail of IVF”, as suggested by some of the authors in this book.

The early pioneers of human IVF very quickly observed that not all gametes and embryos had the same potential to establish an ongoing pregnancy, and only a small proportion of oocytes that fertilized in vitro was truly viable. This was quickly followed by noting that, contrary to established experience in animal models such as the mouse, there is an obvious diversity in human embryo morphology and implantation potential. Although a correlation could be seen between outcome and morphological phenomena such as fragmentation, it was generally accepted that aesthetic appreciation – ‘embryonic looks’ – could be deceiving, and even the ‘ugliest’ embryo of a cohort can sometimes develop into a beautiful healthy baby. After 30 years of clinical IVF treatment, we have learned a great deal about human embryos – but there is still so much left to explore.

The absence of absolute criteria that can predict the implantation potential of an embryo brings to mind the proverbial principle illustrated by the threesome of the Japanese Wise Monkeys – ‘to see no evil, hear no evil, and to speak no evil’. The practice of blindly compensating for lack of appropriate embryonic viability testing by transferring large groups of embryos is now all but gone; the debate surrounding embryo viability has changed instead to one of aptitude – the partial failure of new tests to predict implantation has become the norm. This notion has recently been transformed into a new and exciting science, and the search for the ultimate test has begun: the race is on to achieve the happy retirement of two words: ‘success rate’.

This book was planned as a means of exploring this new and exciting science, and experienced authors who specialize in embryo testing were invited to contribute their expertise. Some of the authors have their background in basic science, other are dedicated to clinical IVF; they all share the common goal of finding this ‘holy grail’ with differing approaches and strategies. Our aim was to produce a book that is comparable to a peer-reviewed work, and the authors graciously allowed us to mingle with their text as editors, patiently providing explanations and further data if it was required. Although it is difficult to cover all aspects of gamete and embryo testing in one text, we tried to make it as comprehensive and up to date as possible.

It is divided into four main sections, with chapters dealing with morphology determinations, immunology and metabolism, genetic aberrations, and pre-fertilization parameters. With respect to morphology assessment, there appears to be no real consensus on how to grade human embryos based on their morphology, and it is therefore relatively easy to criticize this most basic tool. It is generally accepted that there is a correlation between cell number and implantation, yet the absolute nature of this correlation is unknown; prospectively randomized trials have never been contemplated in order to determine the real value of morphological parameters or embryo development rate. We feel that use of microscopy is not over, and the morphology debate is becoming of increasing interest, with obvious but ethically challenging work yet to be undertaken.

The second section on embryo metabolism offers an exciting glimpse into the feasibility of scoring embryos by examining spent culture media, using non-invasive tests. Although large randomized trials have not been carried out in this area of research, retrospective data shows promise, and more research is needed to expand the use of this tool for embryo assessment. The third section of the book explores ways of assessing the genetic status of embryos. Some conditions such as aneuploidy and mosaicism may be associated
PREFACE

with adverse conditions during follicular growth and gamete preparation, and also correlated with clinical outcome. Cell analysis using gene expression or imprinting are exciting approaches that may one day be available as clinical tools. Mutations in mitochondria, or changes in their patterns of activity provide another potential tool for single cell or whole embryo analyses. The fourth and final section covers examples of pre-fertilization parameters: aspects of sperm function, including DNA and centriolar integrity, and investigations of follicle-specific factors that influence oocyte competence.

Kay Elder
Jacques Cohen
Acknowledgments

We are deeply indebted to all of our friends and colleagues who generously invested their time, experience and expertise in order to contribute to this book, and very much appreciate their tolerant patience in accepting and responding to our comments, questions and editorial corrections. We could also like to acknowledge and thank Nick Dunton, who was responsible for 'conceiving' the book, and for getting it into the first stages of development. We are grateful to Robert Peden, Lindsay Campbell and Helen Brock at Informa Healthcare for taking over this project during its completion.
1. Human oocyte and embryo assessment for ART

A Henry Sathananthan and Sulochana Gunasheela

INTRODUCTION AND METHODS

The human oocyte, the female germ cell, is a unique cell equipped to fuse with and incorporate the sperm cell at fertilization and to sustain early embryonic development. It needs to be assessed for maturational status and normality for in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in assisted reproductive technologies (ART). It is desirable to obtain a fresh, mature oocyte for insemination, usually after ovarian stimulation with gonadotropins or after down-regulation using gonadotropin-releasing hormone (GnRH) agonists/follicle stimulating hormone (FSH). With improved methods of ovarian stimulation and better timing of human chorionic gonadotropin (hCG), the majority of oocytes approach metaphase II (MII) and could be easily harvested for ART by ultrasonography. The trend now is to harvest a single oocyte in the natural cycle with minimal stimulation. The ripe MII oocyte is ovulated in a natural ovarian cycle around day 14. As much as we assess oocytes and sperm for ART, the embryo has to be assessed for embryo transfer in ART and currently for embryonic stem (ES) cell technology, a logical progression of ART. The fertilized ovum is the embryo, which undergoes cleavage by repeated mitoses to form a blastocyst during the first week of preimplantation embryogenesis (Figure 1.1). The embryonic genome is activated between the 4- and 8-cell stages in humans and the blastocyst implants in the uterus during the second week of development. The reader is referred to atlases of ART and other selected websites and references for images of gametes and embryos.1-9 All embryologists are advised to follow any embryology textbook to appreciate the highlights of development during the embryonic period (the first 8 weeks of development), when most of the tissue and organ rudiments are laid down in the embryo.

This chapter presents images supported by point-form assessments of the relevant stages of development. These include gross morphology, assessed in the laboratory using the inverted light microscope (LM), digital images of epoxy sections (LM), as well as fine structural assessments that may not be seen routinely, visualized by transmission electron microscopy (EMTEM). For surface observations in scanning electron microscopy (SEM), the reader is referred to atlases by Sathananthan3 and Makabe et al.10 Fluorescent microscopy (FM) is dealt with elsewhere in this book (see Chapter 26). The author’s website6 has images relevant to this chapter.

OOCYTE ASSESSMENT

MATURATIONAL STATUS

Preovulatory oocytes, collected from multiple follicles after ovarian stimulation have commenced the final stages of meiotic maturation, ranging from germinal vesicle breakdown (GVBD) through metaphase I (MI), to MII.11-13 Nuclear maturation goes hand-in-hand with cytoplasmic and cortical maturation. Furthermore, changes also occur in the egg vestments, particularly the zona pellucida (ZP), increasing receptivity to sperm binding and penetration. Significantly, GVBD heralds the resumption of meiosis and initiates the expansion of the cumulus during maturation. This usually occurs in the culture medium prior to insemination (IVF) or sperm injection (ICSI) and may take 2-6 hours to complete, depending on the timing of oocyte pickup after administration of hCG. The process might be completed after insemination with washed sperm during IVF. Since the oocyte is
HUMAN PREIMPLANTATION EMBRYO SELECTION

Denuded of cumulus cells before ICSI, it is possible to precisely identify the mature oocyte, which has the first polar body (PB1) at the animal pole (AP). Whatever technique is used, the oocyte should not age in culture, becoming postmature, which could lead to abnormal fertilization and development, particularly aneuploidy and polyploidy.

The mature oocyte is one of the largest cells (100–120 μm in diameter), surrounded by a gelatinous, glycoprotein shell, the ZP, and several layers of follicular cells, composing the cumulus oophorus. The female germ cell carries the 23 maternal chromosomes (n = 23) for procreation. The sperm cell contributes the 23 paternal chromosomes (n = 23) and the dominant centrosome (cell center) that initiates embryonic development after fertilization. Both sperm and egg contribute to the embryonic genome establishing diploidy (2n = 46), the essence of fertilization.

FINE STRUCTURE OF THE MATURE EGG

To appreciate the processes of oocyte maturation, fertilization, and development we need to briefly review the structure of organelles in the oocyte. Basic cellular organelles found in most somatic cells are found in oocytes (Figure 1.2). These include the mitochondria, smooth endoplasmic reticulum (SER), lysosomes, annulate lamellae, few Golgi complexes, microtubules (MT), and microfilaments (MF). The SER consists of isolated vesicles or aggregates of tubular elements. Ribosomes are rare and rough endoplasmic reticulum (RER) is absent. Cortical granules (CG), unique to oocytes, are located beneath the oolemma (plasma membrane) and play an important role in fertilization. The human oocyte has no lipid or yolk inclusions, but survives in the oviduct and uterus during the first week of development.

The metaphase II spindle, located at the AP, is barrel-shaped, anastral, and aligned perpendicular to the surface (Figure 1.3). It is composed of MT but lacks a functional maternal centrosome at each pole. The spermatozoon provides the dominant, centrosome (centriole) for embryo development in humans. The layer of follicle cells just outside the ZP is termed the corona radiata (CR). The CR is composed of typical somatic cells with the usual complement of cellular organelles. The oocyte has a

Figure 1.1 Normal whole embryos – 1-cell stage to blastocyst (LM). (A) Activated oocyte; (B) fertilized ovum (2PN); (C) 2-cell; (D) 4-cell; (E) 6-cell; (F) 8-cell; (G) compaction; (H) morula; (I) blastocyst; (J) hatching blastocyst. (Courtesy Dr. S. Gunasheela.)
HUMAN OOCYTE AND EMBRYO ASSESSMENT FOR ART

The maturing, metaphase I oocyte has:
- No polar body (LM)
- No germinal vesicle (LM)
- An expanding cumulus and corona cells (LM)
- A metaphase I spindle with homologous chromosomes (FM, EM)
- One or two layers of CG beneath oolemma (LM, EM).

(This stage is transient, there being no interphase.)

The immature oocyte (Figure 1.4) at prophase I shows:
- No polar body (LM)
- A GV or nucleus with a dense nucleolus (LM)

Figure 1.2 Human oocyte fine structure. The illustration incorporates cellular organelles of immature and mature oocytes, as well, and two follicle cells that play an important role in oocyte maturation. A = aggregate of SER; C = caveolus; CCP = CR process; CG = cortical granules; Ch = chromosomes; CR = corona radiata; En = endocytosis; Ex = exocytosis; G = Golgi complex; L = primary lysosome; M = mitochondria; MB = multivesicular body; MF = microfilaments; MT = microtubules; MV = microvilli; N = nucleus; PR = polyribosome; PVS = perivitelline space; RB = residual body; RER = rough endoplasmic reticulum; S = vesicular SER; Sp = meiotic spindle; Z = zona pellucida. Modified from Sathananthan et al. (1993).
HUMAN PREIMPLANTATION EMBRYO SELECTION

- A compact, unexpanded cumulus and corona (LM)
- A discontinuous layer of CG beneath oolemma (LM, EM)
- An agranular cortex with Golgi membranes that secrete CG (LM, EM).

(Oocytes about to mature will show an eccentrically located GV at one pole.)

Oocytes during GVBD (Figure 1.4) show: \(^2,\!^{11}\)

- A disappearing GV or nucleus (LM)
- Breakdown of the nuclear envelope (LM, EM)
- Condensation of chromosomes (FM, EM)
- Formation of a spindle with MT (FM, EM)
- Uncoupling of cell junctions between CR cells and oocyte (EM).

(This stage heralds the resumption of meiosis after its arrest at the GV stage.)

Aging, postmature oocytes in culture (Figures 1.5–1.7) will show: \(^2,\!^{11},\!^{13}\)

- A dense ooplasm with vacuoles (swollen vesicular SER) (LM, EM)

Figure 1.3 Normal and aging oocytes – metaphase II spindles (TEM). The normal MII spindle is barrel-shaped, has no centrosomes at either pole and is attached to the egg cortex. The ageing spindle is displaced centripetally and has disorganized chromosomes at its MII plate. CG = cortical granules, p = polar body; S = smooth endoplasmic reticulum; Z, zona. ×27,300, ×3500. From Sathananthan (2002),\(^6\) (2007).\(^22\)

Figure 1.4 Preovulatory oocyte maturation (phase-contrast and LM). (A) and (D) germinal vesicle (GV) stage, (B) and (C) metaphase II, (E) GV breakdown, (F) telophase I, are depicted. Note retraction of cumulus cells in (C) and (E). ×400, ×1000. (A), (B) courtesy Dr. D. Payne, Adelaide, (C)–(F) From Sathananthan et al. 2003.\(^2\)
Figure 1.5 Changes in aging oocyte ultrastructure. A, aggregate of smooth endoplasmic reticulum (SER) (hypertrophic); CG, cortical granules (crowded, displaced); Ch, chromosomes (scattered); G, Golgi; L, lysosome; Lb, lipofuschin body; M, mitochondria (dense); MV, microvilli (short); S, vesicular SER (swollen); Sp, MII spindle (displaced); Z, zona pellucida (hardened). From Sathananthan 1997.

Figure 1.6 Meiotic and mitotic spindles – chromosome scatter (TEM). The MII spindle (A) and that at syngamy (B) are disorganized. Some chromosomes have scattered outside the spindle zone, which can cause aneuploidy in embryos. A ×17 000, B ×10 000. From Sathananthan 2002.

Figure 1.7 Aging oocyte – cortical granules (CG) and smooth endoplasmic reticulum (SER) (TEM). CG crowd beneath the surface with large aggregates of SER. Hypertrophy of SER is primarily induced by gonadotropin stimulation, during maturation. ×35 500. From Sathananthan 2002.

- Normal or abnormal MII spindles, displaced from the surface (LM, FM, EM)
- Loss of spindle MT causing chromosome scatter (LM, FM, EM)
- Crowding of CG beneath oolemma or their centripetal migration (LM, EM)
- Few lipofuschin bodies with aging pigment (EM)
- Large hypertrophic aggregates of tubular SER (EM).

ASSESSMENT OF FERTILIZATION

Fertilization begins with sperm–egg membrane fusion and culminates at syngamy, when the genetic constitution of the embryo is established. The oocyte is activated to become an embryo, the beginnings of life.

The early events of fertilization cannot be visualized in the laboratory, except for the appearance of the second polar body (PB2), usually alongside PB1. These events, however, can be seen by TEM and FM, which are both invasive procedures. About 12 hours after insemination or ICSI it is easy to confirm fertilization in the laboratory, when two distinct pronuclei (PN), male and female, appear in the ooplasm. This stage is currently used to predict
HUMAN PREIMPLANTATION EMBRYO SELECTION

normal development and prospective implantation. Each PN has about eight dense nucleoli that align adjacent to apposing pronuclear membranes in normal pronuclei. Apart from pronuclei, the alignment of nucleolar-associated chromatin is equally important in PN assessment, since this condenses to form the maternal and paternal, homologous chromosomes later at syngamy. This chromatin, however, is more difficult to see in the laboratory but is clearly visible in sections of ova, particularly by TEM (Figure 1.8).

The dominant sperm centrosome has now been released from the sperm neck and is activated to form a sperm monoaster, that will eventually duplicate to establish a bipolar spindle (bipolarization) at the onset of mitosis. The zygote centrosome in the sperm aster has now duplicated centrioles and has become functional by attracting maternal γ-tubulin, which nucleates MT, best visualized by FM. We believe that the restoration of the functionality of the dominant sperm centrosome is the most significant event of oocyte activation that initiates embryo development.15,17

A normally fertilized ovum 3 hours after insemination shows:2,3

- Abstriction of PB2 into the PVS (LM, EM)
- An incorporated, decondensing sperm head in the ooplasm (FM, EM)
- A developing female pronucleus in ooplasm beneath PB2 (FM, EM)
- A sperm tail, midpiece, or sperm centriole in the ooplasm (FM, EM)
- Evidence of CG exocytosis all around the oocyte (EM).

(A fertilization cone may be evident at site of sperm incorporation.)

A normally fertilized ovum 12–14 hours after insemination (Figure 1.8) has:2,3

- Two pronuclei, male and female, associated in the central ooplasm (LM)
- Two polar bodies – PB1 with chromosomes and PB2 with a nucleus (LM)
- Nucleoli aligned close to apposing PN nuclear envelopes (LM, EM)
- No CG or few beneath oolemma after IVF (EM)
- Crowding of organelles, mostly mitochondria, around PN (LM, EM).

(Delayed CG exocytosis has been observed after ICSI by TEM.)

An abnormally fertilized ovum (dispermy) during IVF (Figure 1.9) has:2,3,9

- Three pronuclei (two male and one female) (LM)
- Two polar bodies (PB1 and PB2) in PVS (LM)

Figure 1.8 Normal bipronuclear ova (LM and TEM). These bipronuclear ova, after monospermic fertilization, seem normal. Note alignment of nucleoli adjacent to apposing pronuclear membranes. What is more significant is the alignment of chromatin, associated with nucleoli, which would condense to form the male and female chromosomes at syngamy. ×35 700. From Sathananthan, 2003.6
HUMAN OOCYTE AND EMBRYO ASSESSMENT FOR ART

- A triploid chromosome complement 69XXY or 69XYY (LM)
- Two male centrosomes and two sperm asters (LM, FM, EM)
- A bipolar or tripolar spindle at syngamy (LM, FM, EM).

(May cleave into two or three cells, show normal early cleavage; and even develop to term.)

An abnormal fertilized ovum (digyny) after ICSI shows:

- Three pronuclei (two female and one male) caused by suppression of PB2 (LM)
- A single polar body – PB1 (LM)
- A triploid chromosome complement 69XXX or 69XXY (LM)
- One male centrosome and one sperm aster (FM, EM).

(Will not cleave normally beyond the 6–8-cell stage.)

Structurally abnormal PN ova usually have:

- PN with fuzzy irregular outlines (LM)
- PN of unequal size located peripherally (LM)
- PN not closely associated in the central ooplasm (LM, FM)
- Nucleoli not aligned against apposing PN envelopes (LM, EM)
- PN showing incomplete incorporation of chromatin with micronuclei (EM).

‘Silent fertilization’ (Figure 1.10) may occur when:

- Sperm nuclear decondensation is arrested after IVF or ICSI (FM, EM)
- Sperm head remains unexpanded and does not form a male PN (EM)
- Sperm decondense chromatin but do not release its centrosome (FM, EM)
- The ovum has proceeded to syngamy after rapid PN formation (FM, EM)
- The ovum has arrested at syngamy – centrosomal dysfunction (FM, EM).

(Will not cleave normally beyond the 6–8-cell stage.)

(The acrosome has to be discarded before spermhead decondensation during ICSI.)

Figure 1.9 Dispermic tripronuclear (3PN) ova (TEM). Classical images of 3PN ova at the pronuclear stage and syngamy. Note chromatin (dark specks) and nucleoli located toward adjacent membranes of the pronuclear envelopes. The spindle is tripolar enabling the ovum to divide into three cells, instead of two. ×5000, ×8000. From Sathananthan et al. 1995.
HUMAN PREIMPLANTATION EMBRYO SELECTION

EMBRYO ASSESSMENT

The first week of preimplantation development begins at fertilization and proceeds to blastocyst hatching (Figure 1.1). The first 2 or 3 days are critical in assessing normal development for embryo transfer (ET) in routine ART. The rate and timing of cleavage and development are important in assessing normality (Table 1.1). On day 1 the pronuclear ovum is assessed for normal or abnormal fertilization. The most important morphological parameters to assess in the laboratory are blastomere appearance, fragmentation, and multinucleation. The latter can be assessed non-invasively by using superior optical lenses, combined with digital microphotography recorded on video. Those with equal blastomeres, minimal cytoplasmic fragmentation, and few multinucleated cells have a better prospect of implantation. The fate of each embryo could be monitored right up to blastocyst hatching. Embryos are graded accordingly for ET (Table 1.2). Occasionally, embryonic blocks may occur at the 1-cell, 8-cell, or at any stage depending on culture conditions and embryo quality. It is advisable to let early embryos continue to develop at their own pace to overcome blocks. Totally arrested embryos should be discarded as they will eventually degenerate. Arrests could be caused by mitotic disturbances involving both chromosomal and centrosomal dysfunction. Aneuploidy, polyploidy, and mosaicism are the chief causes of early embryonic loss, apart from extensive fragmentation, which is now regarded as an apoptotic phenomenon. Several

Table 1.1 Normal embryonic growth from day 2–6. An embryo that develops to this timetable is likely to be more viable than the one which shows delayed growth

<table>
<thead>
<tr>
<th>Day</th>
<th>Embryo</th>
<th>Appearance/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fertilized ovum</td>
<td>2 PN (12 hours) and syngamy (18–24 hours)</td>
</tr>
<tr>
<td>2</td>
<td>Cleaving embryo</td>
<td>2-6 cell rounded blastomeres</td>
</tr>
<tr>
<td>3</td>
<td>Cleaving embryo</td>
<td>8–10 cells or rounded blastomeres</td>
</tr>
<tr>
<td></td>
<td>Compacting embryo</td>
<td>Blastomeres show evidence of adhesion</td>
</tr>
<tr>
<td>4</td>
<td>Compacted morula</td>
<td>Blastomeres show increased adhesion</td>
</tr>
<tr>
<td></td>
<td>Early cavitating</td>
<td>Beginning of blastocoel formation</td>
</tr>
<tr>
<td>5</td>
<td>Early blastocyst</td>
<td>Blastocoel formed</td>
</tr>
<tr>
<td></td>
<td>Mid-blastocyst</td>
<td>ICM, trophoblast and blastocyst clearly seen</td>
</tr>
<tr>
<td></td>
<td>Expanding blastocyst</td>
<td>Trophoblast expanding, zona thinning out</td>
</tr>
<tr>
<td></td>
<td>Early hatching</td>
<td>Embryo growing, blastocoel much increased</td>
</tr>
<tr>
<td>6/7</td>
<td>Late blastocyst</td>
<td>Expanded ~150–200 cells; diameter ~215 μm</td>
</tr>
<tr>
<td></td>
<td>Hatching blastocyst</td>
<td>Trophoblast hatching out of zona</td>
</tr>
<tr>
<td></td>
<td>Hatched blastocyst</td>
<td>Trophoblast and ICM hatched out of empty zona</td>
</tr>
</tbody>
</table>

PN, pronuclei; ICM, inner cell mass. Modified from Gunasheela.24

Table 1.2 Embryo grading for embryo transfer in the laboratory. Grades 1 and 2 have a greater potential of establishing a clinical pregnancy

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blastomeres of equal size and no cytoplasmic fragmentation</td>
</tr>
<tr>
<td>2</td>
<td>Blastomeres of equal size and minor cytoplasmic fragmentation (<10%)</td>
</tr>
<tr>
<td>3</td>
<td>Blastomeres of unequal size and variable fragmentation</td>
</tr>
<tr>
<td>4</td>
<td>Blastomeres of equal or unequal size and significant fragmentation (>10%)</td>
</tr>
<tr>
<td>5</td>
<td>Few blastomeres of any size and severe fragmentation (50%)</td>
</tr>
</tbody>
</table>

Modified from Veeck.4
HUMAN OOCYTE AND EMBRYO ASSESSMENT FOR ART

laboratories are now culturing embryos to blastocysts to select the most viable and vigorous for ET on day 6 or 7. Blastocyst culture is expensive, time-consuming, and suitable for larger IVF centers.19–22
Normal cleavage stage embryos (Figures 1.1, 1.11–1.13) usually have:2,4,12
• Rounded equal-sized blastomeres, except when cells are dividing (LM)
• Blastomeres with well defined outlines or cell membranes (LM)
• Cells with centralized, single nuclei, or metaphases (LM, EM)
• No fragments or show minimal fragmentation (<10%) (LM, EM).
(Embryos should develop according to the time frame in Table 1.1.)
Common abnormalities (Figures 1.14–1.17) in early embryos include:1,2,4
• Extensive cytoplasmic fragmentation of blastomeres (30–50%) (LM)
• Spontaneous fragmentation of whole blastomeres – apoptosis? (LM)
• Some unequal or fused blastomeres with eccentric nuclei (LM)
• Multinucleation of blastomeres – polyploidy (LM, FM, EM)
• Micronuclei in blastomeres beside normal nucleus – aneuploidy (LM, FM, EM).

Arrested, degenerating embryos (Figures 1.16 and 1.17) show:1,2
• Dark granular blastomeres and aggregation of organelles (LM)
• Extensive vacuolation of blastomeres – increases density (LM, EM)
• Cells with eccentrically located nuclei (LM, FM, EM)
• Multinucleated cells, many fragments and uneven cells (LM, FM, EM)
• Lack of compaction in later embryos and morulae (LM, EM).

Figure 1.11 Diagrams of normal (A) and abnormal (B) embryos. Both normal and abnormal blastomeres are seen in abnormal embryos. Cytoplasmic fragmentation, multinucleation, and micronucleation are the main abnormalities. Fragments may be internal or external in the PVS, few to many. F, fertilization; C, cell; PN, pronuclei. From Sathananthan et al 1993.9
Normal blastocysts on day 5/6 (Figure 1.18) have

- Distinct trophoblast, ICM and blastocoel (LM)
- Well-defined, compact ICM with many cells and cell junctions (LM, EM)
- Trophoblast forming a continuous, flat epithelium with cell junctions (LM)
- A large fluid-filled blastocoel, when expanded (LM)
- Few cleavage stage fragments in the blastocoel and PVS (LM, EM).

(Healthy blastocysts usually have 150–250 cells after DAPI, 4′,6-diamidino-2-phenylindole, staining.)

Hatching blastocysts on day 6/7 (Figures 1.1 and 1.19) show:

- A fully expanded trophoblast and blastocoel (LM)
- A thinned-out zona (LM)
- Evidence of early hatching – trophoblast emerging at one pole (LM, EM)

Figure 1.12 Two-cell embryos – normal and fragmented. Both normal and abnormal embryos are evident. Fragments appear over the cleavage furrow or a whole cell can fragment totally. ×400. From Sathanathan et al.25

Figure 1.13 Normal human embryos – one cell to morula (phase-contrast). The cleavage embryos have equal blastomeres and minimal cytoplasmic fragmentation, except the 3-cell embryo. ×400. From Menezes (2005).25
Figure 1.14 Fragmented dispermic embryos (LM and TEM). Fragmentation is a common occurrence in early human embryos. Cytoplasmic fragments are devoid of nuclear material (D) compared with a normal blastomere (E). Four–8-cell and 5-cell (left) and a 10-cell embryo (right). ×400, ×3500, ×6000. From Sathananthan et al. 1999b.6,9

Figure 1.15 Abnormal multinucleated dispermic embryos (TEM). (A) 1-cell (fragmented), (B) 2-cell (micronucleated), and (C) and (D) 3-cell embryos (multinucleated). ×6000, ×4000. From Sathanathan 2004.8
HUMAN PREIMPLANTATION EMBRYO SELECTION

- Plump ‘zona-breaker’ (trophoblast) cells at hatching point (LM, EM)
- A layer of endoderm cells beneath ICM (LM, EM).

(Apoptotic cells are usually found in the ICM associated with phagocytic cells.)

Abnormal blastocysts (Figures 1.18 and 1.20) may: 4,20,21

- Have no ICM or have a small or dispersed ICM (LM)
- Fail to expand and hatch on day 6 – are moribund or unable to break zona (LM)
- Arrest in development and often degenerate (LM)
- Have cleavage stage fragments in PVS – interferes with hatching (EM)
- Show many multinucleated cells in ICM, trophoblast, and endoderm (EM).

Figure 1.16 Three to 6-cell dispermic embryos (LM). Both normal and abnormal embryos are shown. Vacuolated blastomeres are degenerating. Note variation in cell size, few fragments, and multinucleated blastomeres. ×100. From Sathananthan et al. 1999b.9

Figure 1.17 Eight to 10-cell dispermic embryos (LM). Both normal and abnormal embryos are evident. Blastomeres with clear vacuoles are degenerating. Note unequal-sized blastomeres and few fragments. ×200. From Sathananthan et al. 1999b.9
Figure 1.18 Normal and abnormal blastocysts after ICSI (LM). (A) Normal blastocyst with trophoblast (T), inner cell mass (ICM), and blastocoel (B); (B) disorganized ICM; (C) disorganized endoderm (E); (D) Failed hatching – degenerating. ×400. From Sathananthan et al. 2003a,b.20,21

Figure 1.19 Hatching blastocyst – zona breakers (LM). The blastocyst has hatched halfway. The inner cell mass is elsewhere. Zona breakers (ZB) at hatching point. A ×400, B ×1000. From Sathananthan et al. 2003b.21

Figure 1.20 Fragments in a blastocyst (TEM). Fragments (F) are found between the trophoblast and zona and are discarded at hatching or remain in the blastocoel (not shown). Note dense mitochondria in fragment of early cleavage embryo. ×3400. From Sathananthan et al. 2003b.21
HUMAN PREIMPLANTATION EMBRYO SELECTION

Chromosome abnormalities in embryos (LM, FISH, PGD):

- Are higher than 50% irrespective of maternal age
- Aneuploidy increases with maternal age (>35 years)
- Aneuploidy is unrelated to embryo dysmorphism
- Polyploidy, mosaicism, chaoticism, and haploidy
- Most arrested embryos are abnormal
- Slow developing embryos also show more abnormalities
- Mosaicism is common in blastocysts – will not implant
- Most dispermic ova are mosaics compared to digynous ova.

Morphological abnormalities correlate well with chromosomal aberrations and decreased implantation potential.9,10,18,22,23

REFERENCES

References

1 Chapter 1- Human oocyte and embryo assessment for ART
2 Chapter 2- The zona pellucida and markers of oocyte and embryo viability

Chapter 3- Morphology and kinetics of human pronuclei

22. Scott L.

4 Chapter 4- Human pronuclei as a mode of predicting viability

Chapter 5- Multinucleation and mosaicism in the human preimplantation embryo

20. Van Blerkom J, Freytag M et al. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 1997;
techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. RBM Online 2002; 4: No 3.
Chapter 6 - The origins and consequences of fragmentation in mammalian eggs and embryos

21. Alikani M, Cohen J,

Chapter 7 - Analysis of blastocyst morphology

5. Fisch JD, Sher G, Adamowicz M, Keskintepe L. The graduated embryo score predicts the outcome of assisted reproductive technologies better than a single day 3 evaluation and achieves results associated with blastocyst transfer from day 3 embryo transfer. Fertil Steril 2003; 80: 1352-8.

Figure 7.5 Non-invasive analysis of human embryo viability. Individual blastocysts are incubated in 0.5-5.0 µl volumes of defined medium. Serial or endpoint samples of medium can then be removed for analysis. An indirect measurement of metabolic pathways, i.e. glycolysis and transamination can be obtained by measuring specific nutrients in combination, such as glucose uptake and lactate production, or amino acid turnover with ammonium production. As well as testing for known molecules, surface enhanced laser desorption/ionization time-of-flight mass spectrometry can also now be used to identify novel peptides and proteins. 68 LDH, lactate dehydrogenase; sHLA-G, soluble histocompatibility antigen class I G; HOXA10, homeobox A10; PAF, platelet activating factor.

31. Papanikolaou EG, D’haeseleer E, Verheyen G et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod 2005; 20: 3198–203.

mind that embryo development is a dynamic process and that the kinetics involved can yield additional information about embryo competence. A number of studies have demonstrated that the timing of cell cleavage is a significant indicator of embryonic competence. The embryo needs not only to develop to the 4-cell stage, but also it needs to do so at the correct time. Cleavage that occurs too rapidly or too slowly is an indication of impaired competence. Likewise, the onset of mitoses and the appearance/disappearance of the pronuclei after fertilization need to take place during a narrow time interval (22–25 hours) in high quality embryos, as suggested by Fancsovits et al. 36 It has also been suggested that the interval between pronuclear breakdown and the first cleavage division should be relatively constant, about 3 hours. 37,38 Other studies have demonstrated that the occurrence of early cleavage may be a good prognostic factor. However, the specific timing of early cleavage seems to be related to the method of fertilization, suggesting that different kinetics are involved in the processes of ICSI vs regular IVF. 39

CONCLUSION

In the past, embryo evaluation has been based mainly
on subjective evaluation of morphological parameters considered to be important markers of quality. However, a number of drawbacks are associated with this type of analysis. One example is the differentiation between large fragments and blastomeres, and another is imprecise estimation of the degree of fragmentation. The introduction of computer-based morphometric analysis has allowed us to enter a new level of embryo evaluation. These techniques open an array of possibilities for standardization and more precise measurements, including total cytoplasmic reduction as a new means of describing fragmentation, and detection of multinucleation based on blastomere size. In the final analysis, the combination of kinetics and morphometrics that include detailed information retrieved over several days is a new and fascinating aspect. The ‘3-dimensionality’ of multilevel

Chapter 9- Development rate, cumulative scoring, and embryonic viability

24. Payne J, Raburn D, Couchman G et al. Relationship between preembryo pronuclear morphology (zygote score) and standard day 2 or 3 embryo morphology with regard to assisted reproductive technique outcomes. Fertil Steril 2005; 84: 900–9.

32. Roseboom T, Vermeiden J, Schoute E et al. The probability of pregnancy after embryo transfer is affected by the age of the patient, cause of infertility, number of embryos transferred and the average morphology score, as revealed by multiple logistic regression analysis. Hum Reprod 1995; 10: 3035–41.

Fisch J, Sher G, Adamowicz M et al. The graduated embryo score predicts the outcome of assisted reproductive technologies better than a single day 3 evaluation and achieves results associated with blastocyst transfer from day 3 embryo transfer. Fertil Steril 2003; 80: 1352-8.

Chapter 10- Human embryo cryopreservation and its effects on embryo morphology

Chapter 11- Manipulating embryo development

Chapter 12- Assessment of soluble human leukocyte antigen G in human embryos

Chapter 13- Immunological aspects of embryo development

22. Goldbard SB, Gollnick SQ, Warner CM. A highly sensitive

14 Chapter 14- Nitric oxide regulation of the preimplantation embryo

15 Chapter 15- Uptake and release of metabolites in human preimplantation embryos

11. Goodall H, Johnson MH. The nature of intercellular coupling within the preimplantation mouse embryo. J Embryo

45. Biggers JD, Whittingham DG, Donahue RP. The pattern of

74. Rogers PAW, Murphy CR, Rogers AW et al.
Chapter 16- Preimplantation embryo metabolism and embryo interaction with the in vitro environment
Chapter 17- Polar body chromosome abnormalities and their consequences for human embryo development

20. Kahrman S, Bahce M, Samli H et al. Healthy births and ongoing pregnancies obtained by preimplantation genetic

18 Chapter 18- Chromosomal status of human embryos

treated with gonadotropin-releasing hormone analogues (GnRHa) and gonadotropins? Hum Reprod 1989; 4: 536–40.

63. James AN, Hennessy S, Reggio B et al. The limited

75. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro:
incidence, type, and relevance to embryo outcome. Hum Reprod 2002; 17: 413-19.

103. Cohen J, Wells D, Munné S. Removal of two cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests employed to enhance implantation rates. Fertil Steril 2007; in press.

144. Munne et al. 2002a.

153. La Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod 2000; 17: 1649-56.

19 Chapter 19- Genomic imprinting and consequences for embryonic development

45. Neimitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum

20 Chapter 20- Selection of viable embryos and gametes by rapid, non-invasive metabolomic profiling of oxidative stress biomarkers

21 Chapter 21- Gene expression analysis in the human oocyte and embryo

85. Snowden T, Acharya S, Butz C et al. hMSH4-hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol

22 Chapter 22- Mitochondria in reproduction: future assays for embryo selection

Chapter 23- Future genetic and other technologies for assessing embryos

24 Chapter 24- Oocyte selection in contemporary clinical IVF: do follicular markers of oocyte competence exist?

55. Dickey R, Matulich E. Ultrasound imaging at the
56. Antczak M. The synthetic and secretory behaviors
(nonsteroidal) of ovarian follicular granulosa cells:
parallels to cells of the endothelial cell lineage. In Van
Blerkom J, Gregory L, Eds. Essential IVF: Basic Research
and Clinical Applications. Boston: Kluwer Academic

57. Michael A. Do biochemical predictors of outcome exist?
In Van Blerkom J, Gregory L, Eds. Essential IVF: Basic

58. Malamitsi-Puchner A. Novel follicular fluid factors
influencing oocyte developmental potential in IVF: a

59. Otani N, Minami S, Yamoto M et al. The vascular
endothelial growth factor/fms-like tyrosine kinase system
in human ovary during the menstrual cycle and early
Yan Z, Neulen J, Raczek S et al. Vascular endothelial
growth factor (VEGF)/vascularity permeability factor (VPF)
production by luteinized human granulosa cells in vitro; a
paracrine signal in corpus luteum formation. Gynecol
Clark A. A novel mechanism of vascular endothelial growth
factor, leptin and transforming growth factor beta2
sequestration in a subpopulation of human ovarian follicle
Blerkom J, Antczak M et al. The expression of leptin and
its receptors in pre-ovulatory human follicles. Mol Hum
Reprod 1997; 3: 467-72. 63. Bouloumie A, Drexler H,
Lafontan M, Busse R. Leptin, the product of the ob gene,
Kamut B, Brown L, Mannseau E et al. Expression of vascular
endothelial growth factor by human granulosa and theca
lutein cells. Role in corpus luteum development. Am J
Pathol 1995; 146: 157-65. 65. Shuei K, Itin A, Soffer D,
Keshet E. Vascular endothelial growth factor induced by
hypoxia may mediate hypoxia-initiated angiogenesis. Nature
1992; 359: 843-5. 66. Smeneza G. Regulation of mammalian O
2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell
the hypoxic response pathway: regulation of the
hypoxia-inducible transcription factor. Genes Dev 2003; 17:
2614-23. 68. Bell E, Brooke M, Emerling B, Navdeep S.

83. Silberstein T, MacLaughlin D, Shai I et al. Mullerian inhibiting substance levels at the time of HCG administration in IVF cycles predicts both ovarian reserve and embryo morphology. Hum Reprod 2006; 21: 159-63.

124. Van Blerkom J, Davis P. Differential effects of
repeated ovarian stimulation on cytoplasmic and spindle
organization in metaphase II mouse oocytes matured in vivo
and in vitro. Hum Reprod 2001; 16: 757-64. 125. Doldi N,
Persico P, De Santis L et al. Consecutive cycles in in
vitro fertilization-embryo transfer. Gynecol Endocrinol
Ovarian response in three consecutive in vitro
25 Chapter 25- Sperm DNA and embryo development

27. Young L, Fernandes K, McEvoy T et al. Epigenetic change inIGF2R is associated with fetal overgrowth after sheep embryo

26 Chapter 26- The sperm centriole: its effect on the developing embryo

integrity is critical for normal mitotic division and early embryonic development. Mol Hum Reprod 1999; 5(9): 836-44.

