Ventilatory Support for Chronic Respiratory Failure

edited by
Nicolino Ambrosino
Roger S. Goldstein
Ventilatory Support for Chronic Respiratory Failure
1. Immunologic and Infectious Reactions in the Lung, edited by C. H. Kirkpatrick and H. Y. Reynolds
2. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal
4. Metabolic Functions of the Lung, edited by Y. S. Bakhle and J. R. Vane
7. Lung Water and Solute Exchange, edited by N. C. Staub
8. Extrapulmonary Manifestations of Respiratory Disease, edited by E. D. Robin
9. Chronic Obstructive Pulmonary Disease, edited by T. L. Petty
10. Pathogenesis and Therapy of Lung Cancer, edited by C. C. Harris
11. Genetic Determinants of Pulmonary Disease, edited by S. D. Litwin
12. The Lung in the Transition Between Health and Disease, edited by P. T. Macklem and S. Permutt
15. Physiology and Pharmacology of the Airways, edited by J. A. Nadel
16. Diagnostic Techniques in Pulmonary Disease (in two parts), edited by M. A. Sackner
17. Regulation of Breathing (in two parts), edited by T. F. Hornbein
20. Sarcoidosis and Other Granulomatous Diseases of the Lung, edited by B. L. Fanburg
21. Sleep and Breathing, edited by N. A. Saunders and C. E. Sullivan
22. Pneumocystis carinii Pneumonia: Pathogenesis, Diagnosis, and Treatment, edited by L. S. Young
23. Pulmonary Nuclear Medicine: Techniques in Diagnosis of Lung Disease, edited by H. L. Atkins
25. Gas Mixing and Distribution in the Lung, edited by L. A. Engel and M. Paiva
27. Pulmonary Development: Transition from Intrauterine to Extrauterine Life, edited by G. H. Nelson
29. The Thorax (in two parts), edited by C. Roussos and P. T. Macklem
30. The Pleura in Health and Disease, edited by J. Chrétien, J. Bignon, and A. Hirsch
32. Pulmonary Endothelium in Health and Disease, edited by U. S. Ryan
33. The Airways: Neural Control in Health and Disease, edited by M. A. Kaliner and P. J. Barnes
34. Pathophysiology and Treatment of Inhalation Injuries, edited by J. Loke
35. Respiratory Function of the Upper Airway, edited by O. P. Mathew and G. Sant’Ambrogio
37. Biology of Lung Cancer: Diagnosis and Treatment, edited by S. T. Rosen, J. L. Mulshine, F. Cutitta, and P. G. Abrams
41. Lung Cell Biology, edited by D. Massaro
42. Heart–Lung Interactions in Health and Disease, edited by S. M. Scharf and S. S. Cassidy
43. Clinical Epidemiology of Chronic Obstructive Pulmonary Disease, edited by M. J. Hensley and N. A. Saunders
44. Surgical Pathology of Lung Neoplasms, edited by A. M. Marchevsky
45. The Lung in Rheumatic Diseases, edited by G. W. Cannon and G. A. Zimmerman
46. Diagnostic Imaging of the Lung, edited by C. E. Putman
47. Models of Lung Disease: Microscopy and Structural Methods, edited by J. Gil
51. Lung Disease in the Tropics, edited by O. P. Sharma
52. Exercise: Pulmonary Physiology and Pathophysiology, edited by B. J. Whipp and K. Wasserman
53. Developmental Neurobiology of Breathing, edited by G. G. Haddad and J. P. Farber
54. Mediators of Pulmonary Inflammation, edited by M. A. Bray and W. H. Anderson
55. The Airway Epithelium, edited by S. G. Farmer and D. Hay
57. The Bronchial Circulation, edited by J. Butler
58. Lung Cancer Differentiation: Implications for Diagnosis and Treatment, edited by S. D. Bernal and P. J. Hesketh
59. Pulmonary Complications of Systemic Disease, edited by J. F. Murray
60. Lung Vascular Injury: Molecular and Cellular Response, edited by A. Johnson and T. J. Ferro
61. Cytokines of the Lung, edited by J. Kelley
63. Pulmonary Disease in the Elderly Patient, edited by D. A. Mahler
64. Cystic Fibrosis, edited by P. B. Davis
65. Signal Transduction in Lung Cells, edited by J. S. Brody, D. M. Center, and V. A. Tkachuk
66. Tuberculosis: A Comprehensive International Approach, edited by L. B. Reichman and E. S. Hershfield
70. Fluid and Solute Transport in the Airspaces of the Lungs, edited by R. M. Effros and H. K. Chang
72. Airway Secretion: Physiological Bases for the Control of Mucous Hypersecretion, edited by T. Takishima and S. Shimura
73. Sarcoidosis and Other Granulomatous Disorders, edited by D. G. James
74. Epidemiology of Lung Cancer, edited by J. M. Samet
75. Pulmonary Embolism, edited by M. Morpurgo
76. Sports and Exercise Medicine, edited by S. C. Wood and R. C. Roach
77. Endotoxin and the Lungs, edited by K. L. Brigham
78. The Mesothelial Cell and Mesothelioma, edited by M.-C. Jaurand and J. Bignon
80. Pulmonary Fibrosis, edited by S. Hin. Phan and R. S. Thrall
81. Long-Term Oxygen Therapy: Scientific Basis and Clinical Application, edited by W. J. O'Donohue, Jr.
82. Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure, edited by C. O. Trouth, R. M. Millis, H. F. Kiwull-Schöne, and M. E. Schläfke
83. A History of Breathing Physiology, edited by D. F. Proctor
84. Surfactant Therapy for Lung Disease, edited by B. Robertson and H. W. Taeusch
86. Severe Asthma: Pathogenesis and Clinical Management, edited by S. J. Szefler and D. Y. M. Leung
87. Mycobacterium avium–Complex Infection: Progress in Research and Treatment, edited by J. A. Korvick and C. A. Benson
88. Alpha 1–Antitrypsin Deficiency: Biology ● Pathogenesis ● Clinical Manifestations ● Therapy, edited by R. G. Crystal
89. Adhesion Molecules and the Lung, edited by P. A. Ward and J. C. Fantone
90. Respiratory Sensation, edited by L. Adams and A. Guz
91. Pulmonary Rehabilitation, edited by A. P. Fishman
92. Acute Respiratory Failure in Chronic Obstructive Pulmonary Disease, edited by J.-P. Derenne, W. A. Whitelaw, and T. Similowski
94. Inhalation Aerosols: Physical and Biological Basis for Therapy, edited by A. J. Hickey
96. The Genetics of Asthma, edited by S. B. Liggett and D. A. Meyers
97. Inhaled Glucocorticoids in Asthma: Mechanisms and Clinical Actions, edited by R. P. Schleimer, W. W. Busse, and P. M. O’Byrne
98. Nitric Oxide and the Lung, edited by W. M. Zapol and K. D. Bloch
99. Primary Pulmonary Hypertension, edited by L. J. Rubin and S. Rich
100. Lung Growth and Development, edited by J. A. McDonald
101. Parasitic Lung Diseases, edited by A. A. F. Mahmoud
102. Lung Macrophages and Dendritic Cells in Health and Disease, edited by M. F. Lipscomb and S. W. Russell
103. Pulmonary and Cardiac Imaging, edited by C. Chiles and C. E. Putman
105. Oxygen, Gene Expression, and Cellular Function, edited by L. Biadasz Clerch and D. J. Massaro
106. Beta2-Agonists in Asthma Treatment, edited by R. Pauwels and P. M. O’Byrne
110. Asthma and Immunological Diseases in Pregnancy and Early Infancy, edited by M. Schatz, R. S. Zeiger, and H. N. Claman
111. Dyspnea, edited by D. A. Mahler
112. Proinflammatory and Antiinflammatory Peptides, edited by S. I. Said
114. Eicosanoids, Aspirin, and Asthma, edited by A. Szczeklik, R. J. Gryglewski, and J. R. Vane
115. Fatal Asthma, edited by A. L. Sheffer
116. Pulmonary Edema, edited by M. A. Matthay and D. H. Ingbar
118. Physiological Basis of Ventilatory Support, edited by J. J. Marini and A. S. Slutsky
124. Lung Tumors: Fundamental Biology and Clinical Management, edited by C. Brambilla and E. Brambilla
125. Interleukin-5: From Molecule to Drug Target for Asthma, edited by C. J. Sanderson
126. Pediatric Asthma, edited by S. Murphy and H. W. Kelly
127. Viral Infections of the Respiratory Tract, edited by R. Dolin and P. F. Wright
129. Gastroesophageal Reflux Disease and Airway Disease, edited by M. R. Stein
130. Exercise-Induced Asthma, edited by E. R. McFadden, Jr.
131. LAM and Other Diseases Characterized by Smooth Muscle Proliferation, edited by J. Moss
132. The Lung at Depth, edited by C. E. G. Lundgren and J. N. Miller
133. Regulation of Sleep and Circadian Rhythms, edited by F. W. Turek and P. C. Zee
134. Anticholinergic Agents in the Upper and Lower Airways, edited by S. L. Spector
135. Control of Breathing in Health and Disease, edited by M. D. Altose and Y. Kawakami
136. Immunotherapy in Asthma, edited by J. Bousquet and H. Yssel
137. Chronic Lung Disease in Early Infancy, edited by R. D. Bland and J. J. Coalson
139. New and Exploratory Therapeutic Agents for Asthma, edited by M. Yeadon and Z. Diamant
140. Multimodality Treatment of Lung Cancer, edited by A. T. Skarin
141. Cytokines in Pulmonary Disease: Infection and Inflammation, edited by S. Nelson and T. R. Martin
142. Diagnostic Pulmonary Pathology, edited by P. T. Cagle
143. Particle–Lung Interactions, edited by P. Gehr and J. Heyder
145. Combination Therapy for Asthma and Chronic Obstructive Pulmonary Disease, edited by R. J. Martin and M. Kraft
146. Sleep Apnea: Implications in Cardiovascular and Cerebrovascular Disease, edited by T. D. Bradley and J. S. Floras
149. Lung Surfactants: Basic Science and Clinical Applications, R. H. Notter
150. Nosocomial Pneumonia, edited by W. R. Jarvis
151. Fetal Origins of Cardiovascular and Lung Disease, edited by David J. P. Barker
152. Long-Term Mechanical Ventilation, edited by N. S. Hill
154. Asthma and Respiratory Infections, edited by D. P. Skoner
156. Genetic Models in Cardiorespiratory Biology, edited by G. G. Haddad and T. Xu
158. Ventilator Management Strategies for Critical Care, edited by N. S. Hill and M. M. Levy
162. Drug Delivery to the Lung, edited by H. Bisgaard, C. O’Callaghan, and G. C. Smaldone
163. Inhaled Steroids in Asthma: Optimizing Effects in the Airways, edited by R. P. Schleimer, P. M. O’Byrne, S. J. Szefler, and R. Brattsand
164. IgE and Anti-IgE Therapy in Asthma and Allergic Disease, edited by R. B. Fick, Jr., and P. M. Jardieu
166. Sleep Apnea: Pathogenesis, Diagnosis, and Treatment, edited by A. I. Pack
167. Biotherapeutic Approaches to Asthma, edited by J. Agosti and A. L. Sheffer
169. Gene Therapy in Lung Disease, edited by S. M. Albelda
<table>
<thead>
<tr>
<th>Title</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>171. Sleep-Related Breathing Disorders: Experimental Models and Therapeutic Potential</td>
<td>edited by D. W. Carley and M. Radulovacki</td>
</tr>
<tr>
<td>172. Chemokines in the Lung</td>
<td>edited by R. M. Strieter, S. L. Kunkel, and T. J. Standiford</td>
</tr>
<tr>
<td>173. Respiratory Control and Disorders in the Newborn</td>
<td>edited by O. P. Mathew</td>
</tr>
<tr>
<td>174. The Immunological Basis of Asthma</td>
<td>edited by B. N. Lambrecht, H. C. Hoogsteden, and Z. Diamant</td>
</tr>
<tr>
<td>176. Non-Neoplastic Advanced Lung Disease</td>
<td>edited by J. R. Maurer</td>
</tr>
<tr>
<td>177. Therapeutic Targets in Airway Inflammation</td>
<td>edited by N. T. Eissa and D. P. Huston</td>
</tr>
<tr>
<td>178. Respiratory Infections in Allergy and Asthma</td>
<td>edited by S. L. Johnston and N. G. Papadopoulos</td>
</tr>
<tr>
<td>179. Acute Respiratory Distress Syndrome</td>
<td>edited by M. A. Matthay</td>
</tr>
<tr>
<td>180. Venous Thromboembolism</td>
<td>edited by J. E. Dalen</td>
</tr>
<tr>
<td>181. Upper and Lower Respiratory Disease</td>
<td>edited by J. Corren, A. Togias, and J. Bousquet</td>
</tr>
<tr>
<td>182. Pharmacotherapy in Chronic Obstructive Pulmonary Disease</td>
<td>edited by B. R. Celli</td>
</tr>
<tr>
<td>183. Acute Exacerbations of Chronic Obstructive Pulmonary Disease</td>
<td>edited by N. M. Siafakas, N. R. Anthonisen, and D. Georgopoulos</td>
</tr>
<tr>
<td>184. Lung Volume Reduction Surgery for Emphysema</td>
<td>edited by H. E. Fessler, J. J. Reilly, Jr., and D. J. Sugarbaker</td>
</tr>
<tr>
<td>185. Idiopathic Pulmonary Fibrosis</td>
<td>edited by J. P. Lynch III</td>
</tr>
<tr>
<td>186. Pleural Disease</td>
<td>edited by D. Bouros</td>
</tr>
<tr>
<td>187. Oxygen/Nitrogen Radicals: Lung Injury and Disease</td>
<td>edited by V. Vallyathan, V. Castranova, and X. Shi</td>
</tr>
<tr>
<td>188. Therapy for Mucus-Clearance Disorders</td>
<td>edited by B. K. Rubin and C. P. van der Schans</td>
</tr>
<tr>
<td>189. Interventional Pulmonary Medicine</td>
<td>edited by J. F. Beamis, Jr., P. N. Mathur, and A. C. Mehta</td>
</tr>
<tr>
<td>190. Lung Development and Regeneration</td>
<td>edited by D. J. Massaro, G. Massaro, and P. Chambon</td>
</tr>
<tr>
<td>191. Long-Term Intervention in Chronic Obstructive Pulmonary Disease</td>
<td>edited by R. Pauwels, D. S. Postma, and S. T. Weiss</td>
</tr>
<tr>
<td>192. Sleep Deprivation: Basic Science, Physiology, and Behavior</td>
<td>edited by Clete A. Kushida</td>
</tr>
<tr>
<td>196. Lung Injury: Mechanisms, Pathophysiology, and Therapy</td>
<td>edited by Robert H. Notter, Jacob Finkelstein, and Bruce Holm</td>
</tr>
</tbody>
</table>
197. Ion Channels in the Pulmonary Vasculature, edited by Jason X.-J. Yuan
198. Chronic Obstructive Pulmonary Disease: Cellular and Molecular Mechanisms, edited by Peter J. Barnes
199. Pediatric Nasal and Sinus Disorders, edited by Tania Sih and Peter A. R. Clement
200. Functional Lung Imaging, edited by David Lipson and Edwin van Beek
201. Lung Surfactant Function and Disorder, edited by Kaushik Nag
203. Molecular Imaging of the Lungs, edited by Daniel Schuster and Timothy Blackwell
205. Acute and Chronic Cough, edited by Anthony E. Redington and Alyn H. Morice
206. Severe Pneumonia, edited by Michael S. Niederman
207. Monitoring Asthma, edited by Peter G. Gibson
209. Childhood Asthma, edited by Stanley J. Szefler and Soren Pedersen
210. Sarcoidosis, edited by Robert Baughman
211. Tropical Lung Disease, Second Edition, edited by Om Sharma
212. Pharmacotherapy of Asthma, edited by James T. Li
213. Practical Pulmonary and Critical Care Medicine: Respiratory Failure, edited by Zab Mosenifar and Guy W. Soo Hoo
214. Practical Pulmonary and Critical Care Medicine: Disease Management, edited by Zab Mosenifar and Guy W. Soo Hoo
215. Ventilator-Induced Lung Injury, edited by Didier Dreyfuss, Georges Saumon, and Rolf D. Hubmayr
216. Bronchiol Vascular Remodeling in Asthma and COPD, edited by Aili Lazaar
217. Lung and Heart–Lung Transplantation, edited by Joseph P. Lynch III and David J. Ross
218. Genetics of Asthma and Chronic Obstructive Pulmonary Disease, edited by Dirkje S. Postma and Scott T. Weiss
220. Narcolepsy and Hypersomnia, edited by Claudio Bassetti, Michel Billiard, and Emmanuel Mignot

225. Ventilatory Support for Chronic Respiratory Failure, edited by Nicolino Ambrosino and Roger S. Goldstein

The opinions expressed in these volumes do not necessarily represent the views of the National Institutes of Health.
Ventilatory Support for Chronic Respiratory Failure

Edited by
Nicolino Ambrosino
University Hospital Pisa
Pulmonary Rehabilitation and Weaning Center
Volterra, Italy

Roger S. Goldstein
West Park Healthcare Centre
University of Toronto
Toronto, Ontario, Canada
Introduction

The concept of ventilatory support is not new. It has been reported that BC Egyptians and Greeks described the theories of respiration. The Old Testament (800 BC) tells us that the Prophet Elisha induced mouth to mouth pressure breathing in a dying child! Much later, in the sixteenth century Theophrastus Bombastus von Hohenheim, or the “Famoso Doctor” Paracelsus, also known as the “wandering spirit,” used the fire bellows of the time as devices for assisted ventilation: they were connected to the patients by a tube inserted in the mouth. In the following centuries, medical pioneers such as Vesalius, Hooke, Fathergill, and Hunter, among others, continued to advance the concept of ventilatory support, while others in the engineering field developed devices to expand its application.

However, it is the Scandinavian polio epidemics of the 1950s that gave rise to a new era of mechanical ventilation defined by the realization that many patients could benefit from it. This was coupled with the emergence of blood gas analysis and of a new medical discipline, that is, Respiratory Intensive Care. The description of the adult respiratory distress syndrome by Ashbaugh et al. in 1967, and the many studies thereafter on the treatment of this syndrome and related conditions led to an ever increasing use of mechanical ventilation with IPPV during the next 40 years, primarily to treat respiratory failure resulting from acute situations.

Meanwhile, years of productive research have demonstrated that patients with chronic respiratory insufficiency can also benefit from mechanical ventilation. As the Preface of this volume mentions “their survival as well as their health status” may be dependent on long-term ventilatory support. The ever increasing incidence and prevalence of chronic respiratory disease suggests that the use of ventilatory support will markedly increase. However, the techniques and strategies to use it, and when and where (non-intensive care unit, or home), are very different from treating the respiratory failure resulting from acute conditions and in patients with structurally near normal lungs.

This new volume of the series of monographs Lung Biology in Health and Disease edited by Nico Ambrosino and Roger Goldstein is truly a “how to” apply and monitor ventilatory support in patients with chronic respiratory failure treated in an ICU, in the hospital, or at home. It is really a “must read” for health professionals who care for such patients. The editors have called upon experts from many countries to contribute the many subjects presented in this volume. As a result, perspectives from different countries and cultures are considered.
The ultimate goal of this series of monographs is to contribute to better care of the many patients worldwide with chronic respiratory diseases: this is just the goal of this volume! I am grateful to the editors and authors for the opportunity to present such an important and timely contribution.

Claude Lenfant, M.D.
Gaithersburg, Maryland, U.S.A.
As our understanding of respiratory failure has deepened, and as the technical aspects of life support have advanced, increasing numbers of patients now survive acute critical illness but are unable to regain complete independence from ventilatory support. Patients with progressive ventilatory insufficiency due to neuromuscular disease or another chronic condition may experience both physiologic benefit and improved quality of life through the institution of part- or full-time mechanical support of ventilation, either invasive or noninvasive. For these and other patients with chronic respiratory failure, ventilatory support has become an established therapy, whose evidence base and practical application have expanded dramatically during the last 20 years. This book perfectly combines both the science and the art of long-term mechanical ventilation, bringing key research findings along with the wisdom of vast experience to the bedside in the care of patients with chronic respiratory failure. It is a remarkable achievement.

To appreciate the pathophysiology of respiratory failure, and to appropriately tailor therapy to the needs of the individual patient, the different components of the illness must be understood and assessed. The degree to which oxygenation, ventilation, airway protection, and secretion clearance are impaired, and what measures are required to manage each of them, are important determinants of where and by whom a particular patient may be cared for. They determine, for example, whether invasive or noninvasive ventilation will be more appropriate for that patient, how likely it is that the patient can be managed successfully at home, and how much external support in the form of equipment and personnel will be required.

Caring for the patient with chronic respiratory failure involves other considerations as well. General physical conditioning and peripheral muscle training, nutritional support, and attention to personal and psychological needs are only some of the important nonrespiratory areas if long-term outcomes are to be optimal. In addition, the perspectives of the patient himself or herself, as well as those of family members and others most closely involved in that person’s ongoing daily care, are vital to successful overall management.

While the needs of individual patients vary, the array of resources and professional skills that must be available for optimal management is consistent regardless of the particular health care system in which those patients are cared for. Respiratory care for patients with chronic respiratory failure is a multidisciplinary,
team enterprise whose members may vary by region, practice setting, or job title, but whose purposes and needs remain the same. The management team may be under the overall direction of a pulmonologist, rehabilitation specialist, or other physician, and may include respiratory therapists, nurses, or physical therapists in varying combination; the apparatus and supplies used for ventilatory support, airway care, and monitoring may be different, provided and maintained through different systems and approaches; how ancillary services and consultation are accessed may vary. Despite these differences, however, all patients receiving ventilatory support for chronic respiratory failure need access to state-of-the-art care provided in the context of best information and up-to-date resources.

This book thoroughly covers all aspects of its subject. After reviewing the pathophysiology and manifestations of chronic respiratory failure and the available approaches to mechanical ventilation, it considers the various aspects of weaning, including how to optimize the likelihood of success and to determine whether complete liberation from ventilatory support is appropriate for a given individual. It takes the patient from the intensive care unit, through the various specialized institutional facilities that may exist in different areas, into the community and the patient’s home. The rationale, evidence, and practical application of different specialized interventions and the components of rehabilitation are covered in detail. Thorough discussion is provided about the personnel involved in long-term mechanical ventilation—their different roles, how they should be trained, and how they work together as a team in meeting the needs of the patient. Separate chapters address available devices and techniques and their optimal application in individual cases, as well as the use of pharmacological agents and the management of secretions. The important topics of quality of life, legal and ethical issues, and end-of-life care are covered in detail. In addition, separate chapters discuss the special circumstances and needs of patients with different underlying or complicating conditions, and different causes of chronic respiratory failure.

Professors Ambrosino and Goldstein have done a masterful job of bringing all this together. The author list—76 authorities in 13 countries who represent every relevant profession and specialty—is essentially a “Who’s Who” of the most respected investigators and clinicians in the field. The book has been conceived and organized so that every aspect is addressed. Clinicians involved in the care of patients with chronic respiratory failure will find here a complete, practical, accessible resource, regardless of their practice setting or the health care system in which they work.

David J. Pierson, M.D.
Pulmonary and Critical Care Medicine
University of Washington
Seattle, Washington, U.S.A.
Preface

Chronic respiratory failure (CRF) is a global issue as, increasingly, patients with both obstructive and restrictive conditions survive longer. In parallel, the intensive care unit (ICU) has enabled major advances in the management of patients with respiratory failure, attributable to acute respiratory and non respiratory conditions. Therefore, an increasing number of patients with chronic respiratory insufficiency become dependent for their survival as well as their health status, on long term mechanical ventilation. Home mechanical ventilation (HMV) is becoming an increasingly relevant option for patients with CRF, encouraged by; the introduction of noninvasive positive pressure ventilation (NIPPV), the recognition of the many different diagnostic categories of patients who can benefit from this approach and the pressures on institutions worldwide, to reduce healthcare costs by reducing in-patient hospitalization. As the population ages, we can expect this issue to increase in importance, challenging society as well as all levels of the healthcare system.

This book, is designed to address the growing need for information on long term ventilation in CRF. It is structured in nine parts, beginning with introductory chapters on chronic respiratory failure as a global problem, broad principles of acute and chronic ventilation and the prevalence of the major diagnostic categories. The text then moves from the difficult to wean ICU patient, to the newer concept of rehabilitation in the ICU, long-term ventilation in the non ICU settings in hospital and the community to special respiratory and non respiratory considerations of this population. The last three sections provide insights into CRF among different patient groups, perspectives on long-term ventilation by the healthcare professionals, the patient and the family care givers and finally worldwide approaches, encompassing Europe, North and South America and Asia.

The editors and authors hope that this text will assist healthcare professionals interested in this area, by providing an overview of the clinical, economic and ethical challenges to the healthcare system, posed by those requiring long-term ventilation. In this way, it may assist healthcare professionals in addressing the various exciting challenges of caring for this population.

Nicolino Ambrosino
Roger S. Goldstein
Contributors

Nicolino Ambrosino Pulmonary and Respiratory Intensive Care Unit-University Hospital Pisa, Italy and Pulmonary Rehabilitation and Weaning Center, Auxilium Vitae, Volterra (PI), Italy

Monica Avendano West Park Healthcare Centre, Toronto, Ontario, Canada

John R. Bach University of Medicine and Dentistry of New Jersey–The New Jersey Medical School, Newark, New Jersey, U.S.A.

Rita F. Bonczek Hospital for Special Care, New Britain, Connecticut, U.S.A.

Dina Brooks West Park Healthcare Centre, University of Toronto, Toronto, Ontario, Canada

P. M. A. Calverley Department of Medicine, Clinical Sciences Centre, University Hospital Aintree, Liverpool, U.K.

Annalisa Carlucci Pulmonary Rehabilitation and Respiratory Intensive Care, Fondazione S. Maugeri-IRCCS, Pavia, Italy

Laura Carrozzi University Hospital of Pisa, Pisa, Italy

Pamela A. Cazzolli The ALS/Neuromuscular Education Project, Canton, Ohio, U.S.A.

Bartolome R. Celli Caritas St. Elizabeth’s Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.

Enrico M. Clini University of Modena, Modena, and Ospedale Villa Pineta, Pavullo (MO), Italy

Gerard J. Criner Temple University School of Medicine, Philadelphia, Pennsylvania, U.S.A.
Antoine Cuvelier Pulmonary Department and Respiratory Intensive Care Unit, Rouen University Hospital, Rouen, France

Lori Davis West Park Healthcare Centre, Toronto, Ontario, Canada

Marc Decramer University Hospitals Leuven and Katholieke Universiteit Leuven, Leuven, Belgium

Eduardo Luis De Vito Universidad de Buenos Aires, Buenos Aires, Argentina

Miguel Divo Caritas St. Elizabeth’s Medical Center, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.

Claudio F. Donner Mondo Medico, Multidisciplinary and Rehabilitation Outpatient Clinic, Borgomanero, Novara, Italy

Mark W. Elliott St. James’s University Hospital, Leeds, U.K.

Scott K. Epstein Tufts University School of Medicine, Boston, Massachusetts, U.S.A.

Joan Escarrabill Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain

Brigitte Fauroux Pediatric Pulmonary and INSERM UMR S719 AP-HP, Hopital Armand Trousseau and Université Pierre et Marie Curie, Paris, France

Miquel Ferrer Servei de Pneumologia, Institut Clínic del Tòrax, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain

Debbie Field Lane Fox Respiratory Intensive Care Unit, St. Thomas’ Hospital, London, U.K.

Pamela Frigerio Azienda Ospedaliera Niguarda Ca’ Granda, Milano, Italy

Elizabeth Gartner West Park Healthcare Centre, Toronto, Ontario, Canada

Barbara Gibson West Park Healthcare Centre, University of Toronto, Toronto, Ontario, Canada

Allen Goldberg American College of Chest Physicians, Northbrook, Illinois, U.S.A.
Contributors

James Goldring Royal Free and University College Medical School, London, U.K.

Roger S. Goldstein West Park Healthcare Centre, University of Toronto,
Toronto, Ontario, Canada

Miguel R. Gonçalves Pulmonary Medicine Department, Intensive Care and
Emergency Department, University Hospital S. João, Porto, Portugal

M. Gorini Respiratory Intensive Care and Thoracic Physiopathology Unit,
Careggi University Hospital, Firenze, Italy

Rik Gosselink University Hospitals Leuven and Katholieke Universiteit Leuven,
Leuven, Belgium

Inderjit Hansra Tufts-New England Medical Center, Boston, Massachusetts,
U.S.A.

Rachel Heft West Park Healthcare Centre, Toronto, Ontario, Canada

Nicholas S. Hill Tufts-New England Medical Center, Boston and New England
Sinai Hospital, Stoughton, Massachusetts, U.S.A.

Christina Hurtado West Park Healthcare Centre, Toronto, Ontario, Canada

Hideki Ishihara Osaka Prefectural Medical Center for Respiratory and Allergic
Diseases, Osaka, Japan

Yuka Ishikawa National Yakumo Hospital, Yakumo, Hokkaido, Japan

Sharon Jankey West Park Healthcare Centre, Toronto, Ontario, Canada

Victor Kim Temple University School of Medicine, Philadelphia, Pennsylvania,
U.S.A.

Shih-Chi Ku Department of Internal Medicine, National Taiwan University
Hospital, Taipei, Taiwan

Franco Laghi Loyola University of Chicago Stritch School of Medicine and
Edward Hines, Jr. Veterans Administration Hospital, Maywood, Illinois, U.S.A.

Gerhard Laier-Groeneveld Evangelisches und Johanniterkrankenhaus Oberhau-
sen, Medizinische Klinik II, Lungen-und Bronchialheilkunde, Oberhausen, Germany
Allison Lane-Reticker University of Connecticut Health Center, Hartford, Connecticut, U.S.A.

Patrick Leger Laboratoire du sommeil, Service de Pneumologie, Centre Hospitalier Lyon Sud, France

Susan Sortor Leger ResMed Europe, Parc Technologique de Lyon, France

Frédéric LoFaso Physiology Department and INSERM 841 AP-HP, Hopital Raymond Poincaré and Université Versailles Saint-Quentin en Yvelines, Garches, France

Neil R. MacIntyre Duke University Medical Center, Durham, North Carolina, U.S.A.

Barry Make University of Colorado School of Medicine, Denver, Colorado, U.S.A.

Douglas A. McKim University of Ottawa, Ottawa, Ontario, Canada

Jean-François Muir Pulmonary Department and Respiratory Intensive Care Unit, Rouen University Hospital, Rouen, France

Paolo Navalesi Intensive Care Unit, Università del Piemonte Orientale “A. Avogadro”, Azienda Ospedaliera “Maggiore della Carità”, Novara, Italy

Paulaen Pratt Critical Care and Chronic Ventilation Service, University Hospitals of Leicester, NHS Trust, Leicester, U.K.

Jane Reardon Hartford Hospital, Hartford, Connecticut, U.S.A.

Cathy Relf West Park Healthcare Centre, Toronto, Ontario, Canada

J. Afonso Rocha Hospital da Senhora da Oliveira-Guimaraes, Guimaraes, Portugal

Carolyn L. Rochester Yale University School of Medicine, New Haven and VA Connecticut Healthcare System, West Haven, Connecticut, U.S.A.

Paul J. Scalise University of Connecticut Medical School, Farmington, Connecticut, U.S.A.

Bernd Schönhofer Hospital Oststadt-Heidehaus, Hannover Area Hospital, Hannover, Germany

Suzanne Scinto West Park Healthcare Centre, Toronto, Ontario, Canada

Anita K. Simonds Royal Brompton Hospital, London, U.K.
Katsunori Tatara National Yakumo Hospital, Yakumo, Hokkaido, Japan

Antoni Torres Servei de Pneumologia, Institut Clínic del Tòrax, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain

Ludovico Trianni University of Modena, Modena, and Ospedale Villa Pineta, Pavullo (MO), Italy

Thierry Troosters* University Hospitals Leuven and Katholieke Universiteit Leuven, Leuven, Belgium

Douglas Turner Critical Care and Chronic Ventilation Service, University Hospitals of Leicester, NHS Trust, Leicester, U.K.

Mauricio Valencia Servei de Pneumologia, Institut Clínic del Tòrax, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain

Andrea Vianello Respiratory Pathophysiology Unit, University Hospital, Padova, Italy

Michele Vitacca Fondazione S. Maugeri, IRCCS, Lumezzane (BS), Italy

John J. Votto University of Connecticut Medical School, Farmington, Connecticut, U.S.A.

Chong-Jen Yu Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

Jadwiga Wedzicha Royal Free and University College Medical School, London, U.K.

Alex White Tufts-New England Medical Center, Boston and New England Sinai Hospital, Stoughton, Massachusetts, U.S.A.

Peter J. Wijkstra University Medical Centre Groningen, Groningen, The Netherlands

João C. Winck Serviço de Pneumologia, Faculdade de Medicina do Porto, Portugal

*Post-doctoral Fellow of FWO-Vlaanderen.
Contents

Introduction Claus Lenfant iii
Foreword David J. Pierson v
Preface vii
Contributors ix

Part I: Introduction

1. Chronic Respiratory Failure 1
 P. M. A. Calverley and M. Gorini
 I. Definition 1
 II. Classification 1
 III. Pathophysiology of Chronic Respiratory Failure 4
 IV. Some Specific Diseases Associated with
 Respiratory Failure 7
 References 9

2. Principles of Positive Pressure Mechanical Ventilatory Support 13
 Neil R. MacIntyre
 I. Introduction 13
 II. Positive Pressure Mechanical Ventilator Design Features ... 13
 III. Physiologic Effects of PPMV 15
 IV. Complications of Positive-Pressure Ventilation 17
 V. Recent Innovations in Mechanical Ventilatory Support 21
 VI. Conclusions 22
 References 22

3. Chronic Respiratory Failure as a Global Issue 27
 Laura Carrozzi and Barry Make
 I. Introduction 27
 II. Sources of Data on Prevalence of CRF 28
 III. Medical and Home Care in Different Countries 29
 IV. Prevalence of HMV 30
Part II: The Difficult to Wean Patient in the ICU Setting

4. Size of the Problem, What Constitutes Prolonged Mechanical Ventilation, Natural History, Epidemiology
 Scott K. Epstein
 I. What Constitutes Prolonged Mechanical Ventilation 39
 II. Epidemiology of PMV .. 40
 III. Who Becomes Difficult to Wean? 41
 IV. Natural History of Patients Requiring PMV 45
 V. Weaning Outcome ... 45
 VI. Survival .. 48
 VII. Predicting Survival ... 49
 VIII. Health-Related Quality of Life 50
 References ... 50

5. Causes of Difficult Weaning: Which Mechanisms Are Associated with Long-Term Ventilator Dependence?
 Franco Laghi
 I. Introduction .. 57
 II. Determinants of Long-Term Ventilator Dependence 58
 III. Impaired Gas Exchange 58
 IV. Impaired Ventilatory Pump 59
 V. Psychological Factors 75
 VI. Conclusion .. 77
 References ... 77

6. Weaning Protocols, Including Noninvasive Ventilation
 Michele Vitacca
 I. Introduction .. 85
 II. Weaning Protocols .. 86
 III. Results of Weaning Protocols 86
 IV. Weaning Protocols with Noninvasive Mechanical Ventilation 88
 V. Final Recommendations 89
 VI. Conclusion .. 89
 References ... 89
7A. Weaning Units: The U.S. Perspective .. 93
Paul J. Scalise and John J. Votto
 I. Introduction .. 93
 II. Etiology: The U.S. Experience .. 94
 III. Outcomes .. 95
 References .. 95

7B. Weaning in a Specialized Facility .. 99
Bernd Schönhofer
 I. Background and Rationale .. 99
 II. Weaning Facilities .. 99
 III. Locations of WFs .. 99
 IV. WF in Acute Care Hospitals 101
 V. Respiratory Intermediate Care Unit 101
 VI. WF Outside of Acute Care Hospitals 105
 VII. Staffing Issues in WF .. 105
 VIII. Admission Criteria .. 106
 IX. Outcome and Effectiveness 106
 X. Financial Issues .. 106
 XI. Organized Discharge .. 107
 XII. Home Mechanical Ventilation (HMV) 107
 XIII. Conclusions .. 108
 References .. 108

Part III: Rehabilitation in the Intensive Care Unit

8. Organization of Rehabilitation in the ICU 111
Debbie Field
 I. Introduction .. 111
 II. Why Should Rehabilitation Be Integrated into ICU? 111
 III. Organization of Rehabilitation in the ICU 113
 IV. Recommendations for Future Practice 121
 References .. 121
 Appendix 1. Rehabilitation and Weaning Plan for the Case
 Report .. 123

9. Indications and Physiological Basis of
 Rehabilitation in the ICU .. 125
Enrico M. Clini and Nicolino Ambrosino
 I. Introduction .. 125
 II. Weaning .. 125
 III. Physiotherapy .. 126
IV. Conclusions ... 130
References .. 130

10. Peripheral and Respiratory Muscle Training 135
 Rik Gosselink, Thierry Troosters, and Marc Decramer
 I. Introduction 135
 II. Peripheral Muscle Training 136
 III. Weaning and Respiratory Muscle Training 140
 References ... 142

11. Transcutaneous Electrical Muscle Stimulation 145
 Carolyn L. Rochester
 I. Introduction 145
 II. The Basis of Exercise Limitation in COPD 145
 III. The Rationale for TCEMS as a Strategy for Rehabilitation 146
 IV. TCEMS as an Alternate Rehabilitation Strategy 147
 V. Clinical Benefits of TCEMS in Non-COPD Patient
 Populations ... 149
 VI. Effects of TCEMS on Muscle Function and Exercise
 Tolerance Among Patients with COPD 152
 VII. Mechanisms and Duration of Improvement
 in Muscle Function 155
 VIII. Patient Candidacy and Safety 156
 IX. Questions for the Future 157
 References ... 158

12. Psychological Aspects in Patients with Chronic Respiratory
 Failure ... 165
 Sharon Jankey and Claudio F. Donner
 I. Introduction 165
 II. Psychological and Psychosocial Factors 165
 III. Factors Associated with Adjustment and Coping 166
 IV. Assessing and Diagnosing Psychological Disorders 167
 V. Comprehensive Assessments 168
 VI. Treatment Approaches 168
 VII. Assistance for Family and Caregivers 169
 VIII. Conclusion 169
 References ... 170
Part IV: Chronic Ventilatory Assistance in the Hospital (non ICU)

13. Definition and Indications for Prolonged Mechanical Ventilation (PMV) .. 173

Gerard J. Criner and Victor Kim

I. Introduction .. 173
II. Definition .. 173
III. Epidemiology 174
IV. Indications for Chronic Ventilatory Assistance 175
V. Outcome ... 175
VI. Location of Care 176
VII. Summary and Recommendations 179

References .. 179

Andrea Vianello and Nicolino Ambrosino

I. Introduction ... 181
II. Transfer from ICU to Alternative Sites of Care 182
III. Clinical Settings for VAIs 182
IV. Conclusion ... 187

References .. 187

15. The Multidisciplinary Team Training and Experience 189

Miguel Divo

I. Introduction ... 189
II. The Role of Multidisciplinary Team Caring for Ventilator-dependent Patient Through Continuum of Care 189
III. The Multidisciplinary Team Members 191
IV. Multidisciplinary Team Training 192
V. Multidisciplinary Rounds 193
VI. Conclusion ... 194

References .. 194

16. Clinical Experience in a CAVC Unit 197

Monica Avendano, Christina Hurtado, and Roger S. Goldstein

I. Introduction ... 197
II. The Chronic Assisted Ventilatory Care Unit 198
III. The Multidisciplinary Team in the CAVC Unit 199
IV. The Changing Face of the CAVC Unit 202
V. Experience with a CAVC Unit 203
VI. Spectrum of Care 203
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.</td>
<td>Special Situations</td>
<td>206</td>
</tr>
<tr>
<td>VIII.</td>
<td>Conclusion</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>207</td>
</tr>
</tbody>
</table>

Part V: Long-Term Mechanical Ventilation in the Community

17. Indications and Outcomes of Noninvasive Ventilatory Support in Restrictive and Obstructive Disorders

João C. Winck and Anita K. Simonds

1. Introduction ... 211
2. Indications for Noninvasive Ventilatory Support 211
3. Noninvasive Ventilatory Support in Restrictive Disorders . 217
4. Noninvasive Ventilatory Support in Obstructive Disorders . 220

References ... 223

18. Choice of Devices, Ventilators, Interfaces, and Monitors

Susan Sortor Leger and Patrick Leger

1. Introduction ... 231
2. Home Mechanical Ventilators 231
3. Trigger Variables—Change from Expiration to Inspiration . 233
4. Pressurization .. 241
5. Limit Variable—Sustaining Inspiration 242
6. Cycle Variable—Ending Inspiration 242
7. Baseline Variable—Expiration 243
8. Choosing the Right Mode of Ventilation and Adjusting the Settings 244
9. Patient Circuits and Interfaces 248
10. Accessories for HMV 250
11. Monitoring ... 251
12. Conclusion ... 253

References ... 255

19. Training the Home Health Team

Joan Escarrabill and Allen Goldberg

1. Introduction ... 257
2. The Actors .. 258
3. The Interface Between Home and Hospital 260
4. Training According to the Needs and Responsibilities . . . 262

References ... 262
20. Discharge and Follow-Up .. 265
Pauleen Pratt and Joan Escarrabill
I. Introduction .. 265
II. Predischarge ... 265
III. Discharge .. 268
IV. Postdischarge Follow-Up 270
V. Summary .. 271
References .. 271

21. Health-Related Quality of Life 273
Claudio F. Donner and Nicolino Ambrosino
I. Introduction .. 273
II. Assessment .. 273
III. QoL in Ventilated Patients 274
IV. Conclusion .. 282
References .. 282

22. Legal and Ethical Issues 285
Douglas Turner and Pauleen Pratt
I. Introduction .. 285
II. Ethical Theory .. 286
III. Pragmatic Process for Application of the Four Principles ... 288
IV. Living Wills and Patient Autonomy 291
V. Patient Request for Treatment Withdrawal or Terminal Wean ... 291
VI. Chronic Ventilatory Failure 293
VII. Conclusions .. 293
References .. 294

Part VI: Special Considerations

23. Pharmacological Treatment for Patients with Chronic
Respiratory Failure ... 295
Gerhard Laier-Groeneveld
I. Introduction .. 295
II. Bronchodilators for COPD 295
III. Corticosteroids (COPD) 296
IV. Oxygen Therapy (Neuromuscular Diseases) 297
V. Antibiotics ... 297
VI. Cardiac Dysfunction 298
VII. Secretions ... 298
VIII. Body Positioning .. 298
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX.</td>
<td>Mobilization</td>
<td>298</td>
</tr>
<tr>
<td>X.</td>
<td>Aspiration in Tracheotomized Patients</td>
<td>298</td>
</tr>
<tr>
<td>XI.</td>
<td>Summary</td>
<td>References</td>
</tr>
</tbody>
</table>

24. **Patient-Ventilator Interfaces for Invasive and Noninvasive Ventilation**

Paolo Navalesi, Annalisa Carlucci, and Pamela Frigerio

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
</tr>
<tr>
<td>II.</td>
<td>Invasive Ventilatory Assistance</td>
</tr>
<tr>
<td>III.</td>
<td>Noninvasive Ventilation</td>
</tr>
<tr>
<td>IV.</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25. **Tracheostomy Weaning from Longer Term Ventilation**

Douglas A. McKim and J. Afonso Rocha

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
</tr>
<tr>
<td>II.</td>
<td>Pathophysiology of Ventilator Dependence</td>
</tr>
<tr>
<td>III.</td>
<td>Candidacy for Weaning and Decannulation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26. **Communication Alternatives**

Miguel Divo, Elizabeth Gartner, and Suzanne Scinto

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
</tr>
<tr>
<td>II.</td>
<td>Restoring and Augmenting Communication</td>
</tr>
<tr>
<td>III.</td>
<td>Communication Modalities in the MV Patient</td>
</tr>
<tr>
<td>IV.</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27. **Electrophrenic Respiration**

Rachel Heft and Roger S. Goldstein

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
</tr>
<tr>
<td>II.</td>
<td>Patient Selection</td>
</tr>
<tr>
<td>III.</td>
<td>The Pacer System</td>
</tr>
<tr>
<td>IV.</td>
<td>Settings</td>
</tr>
<tr>
<td>V.</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>VI.</td>
<td>Safety Issues</td>
</tr>
<tr>
<td>VII.</td>
<td>Glossopharyngeal Breathing</td>
</tr>
<tr>
<td>VIII.</td>
<td>Clinical Examples</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28. Secretion Management .. 343
 Miguel R. Gonçalves
 I. Introduction .. 343
 II. Physiological Basis for Mucus Hypersecretion and Transport from the Lower Respiratory Tract 344
 III. Impairment of Mucus Elimination and Clinical Indications for Airway Clearance Techniques 345
 IV. Patient Evaluation or Monitoring for Clinical Decision Making .. 348
 V. Control of Mucus and Airway Clearance Techniques 351
 VI. Mechanical Respiratory Muscle Aids for Secretion Management .. 359
 VII. Conclusion .. 364
 References .. 365

29. The Importance of Overnight Monitoring in the Management of Chronic Respiratory Failure 371
 Roger S. Goldstein and Lori Davis
 I. Introduction .. 371
 II. Comment .. 386
 References .. 388

30. Management of Respiratory Infections 389
 Miquel Ferrer, Mauricio Valencia, and Antoni Torres
 I. Introduction .. 389
 II. Epidemiology .. 389
 III. Pathogenesis .. 390
 IV. Risk Factors .. 391
 V. Diagnosis .. 393
 VI. Treatment .. 395
 VII. Conclusion .. 398
 References .. 398

31. Nutrition in ICU .. 401
 Enrico M. Clini, Ludovico Trianni, and Nicolino Ambrosino
 I. Introduction .. 401
 II. Approaching the Malnourished Patient 401
 III. Assessment .. 402
 IV. Screening .. 403
 V. Intervention Strategy 403
 VI. Food Intake in ICU Patients 404
VII. Artificial Nutrition ... 405
VIII. Conclusions ... 409
 References .. 410

32. Skin Integrity, Bowel and Bladder Care 415
 Rita F. Bonczek
 I. Bowel Program 415
 II. Bladder Program 419
 References .. 422

33. Palliative Care for the Ventilator Patient: End-of-Life
 Issues and Approaches 423
 Allison Lane-Reticker
 I. Introduction and Definitions 423
 II. Symptom Management 426
 III. Clinical Vignettes 430
 IV. Summary .. 431
 References .. 432

Part VII: Chronic Respiratory Failure in Different Patient Groups

34. Management of Chronic Respiratory Failure and Obesity .. 433
 Jean-François Muir and Antoine Cuvelier
 I. Introduction .. 433
 II. Pathophysiology 434
 III. Management of Obese Patients and CRF 436
 IV. Acute-on-Chronic Respiratory Failure and Obese Patients .. 440
 References .. 443

35. Progressive Neuromuscular and Degenerative Diseases 445
 John R. Bach
 I. Introduction to Respiratory Muscle Aids 445
 II. Clinical Goals .. 447
 III. The Oximetry Feedback: Respiratory Aid Protocol 451
 IV. Conclusion .. 454
 References .. 454

36. Chronic Ventilatory Support in Obstructive Lung Disease .. 457
 Peter J. Wijkstra and Mark W. Elliott
 I. Introduction .. 457
 II. Rationale for NIPPV in Patients with COPD 457
 III. Uncontrolled Trials 459
IV. Cystic Fibrosis and Bronchiectasis 463
V. Summary ... 464
References .. 464

37. Ventilation Among the Pediatric Population 467
 Brigitte Fauroux and Frédéric Lofaso
 I. Introduction ... 467
 II. Which Patients May Benefit from NPPV? 468
 III. When to Start NPPV? 471
 IV. Long-Term Follow-Up 473
 V. Benefits of NPPV ... 474
 VI. Limits and Side Effects of NPPV 476
 References .. 476

Part VIII: Perspectives on Long-Term Ventilation

38. The Perspective of Patients 481
 Dina Brooks, Barbara Gibson, and Roger S. Goldstein
 I. Introduction and Definitions 481
 II. Quality of Life and Experiences of Ventilator Users 481
 III. Relationship Between Personal Support Workers and Ventilator Users ... 484
 IV. Relationship Between Health Care Professionals and Ventilator Users ... 485
 V. Conclusion .. 486
 References .. 487

39. The Perspective of Family and Caregivers 489
 Pamela A. Cazzolli
 I. Introduction .. 489
 II. Background .. 490
 III. Common Misconceptions of Family Caregivers: 1984–1999 490
 IV. Impact of Slow Communication on the Burden of Care ... 491
 V. Impact of Totally Locked-in Patients on Families 492
 VI. Impact of Immobility on the Burden of Care 493
 VII. Hired Caregivers ... 493
 VIII. Motivating Factors for Continuing LTMV 494
 IX. Need for Social Interaction 494
 X. Life Satisfaction of Family Caregivers: 1984 to the Present 494
 XI. The Impact of Strife on Family Caregivers 495
 XII. Burden of Care ... 496
 XIII. Common Observations of Each Caregiver Group 497
XIV. What Physicians and Nurses Can Do to Help Family Caregivers Achieve Life Satisfaction and Optimal Outcomes .. 498
References ... 499

40. The Perspective of Physicians: The Intensive Care Specialist and the Pulmonary Specialist 501
 Miguel Divo and Bartolome R. Celli
 I. Introduction .. 501
 II. Venues for LTMV 503
 III. Role of the Physician 503
 References 504

41. The Perspective of the Allied Health Professionals 507
 Jane Reardon, Cathy Relf, and Debbie Field
 I. Introduction .. 507
 II. Venues of Care 507
 III. Conclusion 519
 References 520

Part IX: Worldwide Approaches to Long-Term Ventilation

42. Long-Term Ventilation: The North American Perspective 523
 Inderjit Hansra, Alex White, and Nicholas S. Hill
 I. Introduction .. 523
 II. Historical Perspective 523
 III. Epidemiologic Trends in LTMV 524
 IV. Challenges to the Care of LTMV Patients in North America 528
 V. Future Perspectives 531
 References 531

43. Long-Term Ventilation: The European Perspective 535
 James Goldring and Jadwiga Wedzicha
 I. Introduction .. 535
 II. The Situation in Europe in the 1990s 536
 III. The Situation in Europe in 2002 537
 IV. Quality Control of HMV Equipment in Europe 539
 V. Conclusions 541
 References 541
44. Long-Term Ventilation: The South American Perspective . . 543
 Eduardo Luis De Vito
 I. Introduction .. 543
 II. Brazil ... 544
 III. Chile .. 545
 IV. Argentina ... 545
 V. Summary ... 546
 References ... 547

45. Long-Term Ventilation: The Japanese Perspective 549
 Yuka Ishikawa, Katsunori Tatara, and Hideki Ishihara
 I. History of Long-Term Ventilation and
 Home Mechanical Ventilation 549
 II. LTV Outside the Home 550
 References ... 556

46. Long-Term Ventilation: The Taiwanese Perspective 557
 Shih-Chi Ku and Chong-Jen Yu
 I. Introduction ... 557
 II. Epidemiology of LMV in Taiwan 557
 III. Health Expenditure for LMV 558
 IV. Managed Care of LMV: The Integrated Delivery System .. 558
 V. Special Issues of LMV in Taiwan 560
 VI. Conclusion .. 561
 References ... 562

Index 563
1

Chronic Respiratory Failure

P. M. A. CALVERLEY
Department of Medicine, Clinical Sciences Centre,
University Hospital Aintree, Liverpool, U.K.

M. GORINI
Respiratory Intensive Care and Thoracic Physiopathology Unit,
Careggi University Hospital, Firenze, Italy

I. Definition

The term respiratory failure describes a condition in which the respiratory system fails in one or both of its principal gas exchange functions: oxygenation and elimination of carbon dioxide. In clinical practice it is conventionally defined as an arterial oxygen tension (PaO₂) <60 mmHg, an arterial carbon dioxide tension (PaCO₂) >45 mmHg, or both, while breathing air. It is important to emphasize that respiratory failure is a laboratory diagnosis and that there is no absolute definition of the levels of arterial PaO₂ and PaCO₂ that indicate respiratory failure: the cutoff levels serve as a general guide, and their significance depends on the history and clinical assessment of patients.

These threshold values are empirically derived estimates of the point at which bulk transport of gases to and from the tissues may become compromised. Thus, 60 mmHg approximates to the inflection point on the normal oxyhemoglobin dissociation curve when small changes in PaO₂ produce large changes in hemoglobin saturation. Similarly, once the PaCO₂ rises above 45 mmHg for any period, the normal blood-buffering capacity will be exceeded and the pH will fall. Unlike hypoxemia, which cannot be physiologically compensated for, renal compensation for CO₂ retention is possible and occurs over a two- to three-day period during which the pH returns to normal (chronic ventilatory failure). The risks of impaired tissue oxygenation are mitigated by acute increases in cardiac output and more chronically by adaptations in the concentrations of 2,3-diphosphoglycerate, which affects the position of the dissociation curve and an increase in the hemoglobin concentration. This secondary polycythemia preserves the oxygen content of arterial blood at a cost in terms of blood viscosity and an increased tendency to thrombosis.

II. Classification

The two principal components of the respiratory system are the lung, which participates in gas exchange, and a muscular pump, which ventilates the lungs (1,2). The ventilatory pump consists of the chest wall (rib cage and abdomen), including the muscles that displace this
structure and thereby inflate and deflate the lung, together with the ventilatory control circuits in the central nervous system, and the pathways that connect controllers with respiratory muscles (spinal and peripheral nerves) provide a self-regulating feedback mechanism that maintains blood gas homeostasis.

Respiratory failure may be classified as hypoxemic (type I) or hypercapnic (type II or ventilatory failure) (3), either of which may be acute and chronic. Hypoxemic respiratory failure is due to failure of the lungs, caused by acute (cardiogenic pulmonary edema, pneumonia, acute respiratory distress syndrome) or chronic (emphysema, interstitial lung disorders) diseases (Tables 1 and 2). It is characterized by hypoxemia with normocapnia or hypocapnia. In these conditions central respiratory drive is high and there is sufficient alveolar ventilation (VA) to eliminate CO₂ and prevent hypercapnia.

Hypercapnic respiratory failure is due to failure of the ventilatory pump caused by acute (drug overdose, acute neuromuscular diseases) or chronic (chest wall abnormalities, chronic neuromuscular diseases) disorders. It is characterized by alveolar hypoventilation, which leads to hypercapnia with coexistent, usually mild, hypoxemia. The central drive may be globally reduced with the fall in PaO₂ resulting from the increase in alveolar CO₂. More commonly, the drive remains high, but the mechanical load on the respiratory system is too great or the capacity of the muscles too low to ensure efficient CO₂ elimination (Fig. 1).

In individual patients, however, both types of respiratory failure may coexist, as one respiratory problem leads to another with a cascade of interaction (3). For example, patients with cardiogenic pulmonary edema or status asthmaticus first develop hypoxemia due to lung failure; if the disease persists or progresses, pump failure and hypercapnia appear because of several mechanisms (increased work of breathing, reduced oxygen delivery, hyperinflation).

Respiratory failure can develop over minutes to hours (acute respiratory failure) or over several days or longer (chronic respiratory failure). The distinction between acute and

Table 1 Causes of Chronic Hypoxemia with Normal or Low PaCO₂

<table>
<thead>
<tr>
<th>Obstructive ventilatory disorders</th>
<th>Mixed ventilatory disorders</th>
<th>Interstitial lung disorders</th>
<th>Pulmonary vascular diseases</th>
<th>Nonpulmonary diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>Bronchiectasis</td>
<td>Idiopathic pulmonary fibrosis</td>
<td>Pulmonary vascular hypertension</td>
<td>Severe heart failure</td>
</tr>
<tr>
<td>Chronic asthma</td>
<td>Sequelae of tuberculosis</td>
<td>Pneumoconiosis</td>
<td>Chronic pulmonary thrombosis</td>
<td>Hepatopulmonary syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarcoïdosis</td>
<td>Arteriovenous malformations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extrinsic allergic alveolitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: PaCO₂, arterial carbon dioxide pressure; COPD, chronic obstructive pulmonary disease.
Table 2 Causes of Chronic Hypoxemia with Hypercapnia

Pulmonary diseases
 Obstructive ventilatory disorders
 COPD
 Mixed ventilatory disorders
 Bronchiectasis
 Sequelae of tuberculosis
 Nonpulmonary diseases
 Dysfunction of respiratory centers
 Primary alveolar hypoventilation
 Obesity hypoventilation syndrome
 Depressant drugs
 Myxoedema
 Lesion of brainstem

Neuromuscular diseases
 Poliomyelitis
 Amyotrophic lateral sclerosis
 Myasthenia gravis
 Muscular dystrophies, polymyositis

Chest wall deformities
 Kyphoscoliosis
 Ankylosing spondylitis
 Chest trauma
 Thoracoplasty

Pleural thickening

Obstruction of upper respiratory tract

Abbreviation: COPD, chronic obstructive pulmonary disease.

Figure 1 Schematic representation of the balance of forces on the respiratory pump.
Source: Courtesy of J. Moxham.
chronic hypoxemic respiratory failure cannot readily be made on the basis of arterial blood gases. The presence of clinical markers of chronic hypoxemia (polycythemia or cor pulmonale) suggests a long-standing disorder. Acute hypercapnic respiratory failure is characterized by hypercapnia with respiratory acidosis (pH < 7.35), whereas in chronic hypercapnic respiratory failure there is time for renal compensation with increase in bicarbonate concentration. Therefore, the pH usually is normal or only slightly decreased.

III. Pathophysiology of Chronic Respiratory Failure

A. Hypoxemic Respiratory Failure

The pathophysiological mechanisms that account for the hypoxemia observed in a wide variety of diseases are ventilation/perfusion (V/Q) mismatch, shunt, diffusion impairment, and alveolar hypoventilation (4,5). In some areas of the world, living at high altitude further compromises oxygen delivery, and lesser degrees of disease severity can produce clinically alarming degrees of hypoxemia. In most cases of oxygenation failure in patients living at or close to the sea level, V/Q mismatch and varying degrees of right to left shunting are the major causes of hypoxemia. V/Q mismatch develops when there are lung regions with low ventilation relative to their perfusion (low V/Q units), as occurs in chronic obstructive pulmonary disease (COPD) and interstitial lung diseases. An intrapulmonary or intracardiac shunt causes deoxygenated mixed venous blood to bypass ventilated alveoli and results in venous admixture. This condition can occur in patients with arteriovenous malformations but is also seen in intensive care unit (ICU) practice when an acute increase in pulmonary artery pressure can lead to a patent foramen ovale’s reopening with a major effect on PaO2. Diffusion impairment contributes to hypoxemia in conditions characterized by a combination of widened alveolocapillary distance and shortened pulmonary capillary transit time, such as extensive destruction and fibrosis of pulmonary parenchyma, especially when cardiac output is high (as during exercise).

In the absence of underlying lung disease, hypoxemia due to alveolar hypoventilation is associated with normal alveolar-arterial oxygen difference; in contrast, the other three mechanisms are characterized by a widening of alveolar-arterial oxygen gradient, resulting in severe hypoxemia. Hypoxemia due to V/Q mismatch, diffusion impairment, and alveolar hypoventilation can be corrected by administering a low concentration of inspired oxygen, whereas hypoxemia due to shunt cannot be corrected even with a high concentration of inspired oxygen (4,5).

B. Hypercapnic Respiratory Failure

For a given level of CO2 production (VCO2), hypercapnic respiratory failure results only from an inadequate VA. A simple equation describes these relationships quantitatively under steady state conditions:

$$\text{PaCO}_2 = K \frac{\text{VCO}_2}{\text{VA}}$$

where K is the respiratory exchange ratio.
Since VA = minute ventilation (VE) – dead-space ventilation (VD), this equation can be expressed as

\[\text{PaCO}_2 = K \frac{\text{VCO}_2}{\text{VE} - \text{VD}} \]

or

\[\text{PaCO}_2 = K \frac{\text{VCO}_2}{\text{VT} \text{Fr}(1 - \text{VD}/\text{VT})} \]

where VT is the tidal volume and Fr is the respiratory frequency (2).

From these equations, it follows that VA decreases and so PaCO2 increases when VE decreases. Likewise, when VE and VD remain unchanged but VT decreases and respiratory frequency (RF) increases (rapid shallow breathing), PaCO2 increases. Patients adopt a rapid shallow breathing pattern to minimize respiratory work per breath, but this form of compensatory behavior can be deleterious to gas exchange and is a major factor producing chronic hypercapnic respiratory failure in patients with COPD and neuromuscular disorders (6–10).

The function of the ventilatory pump is critically dependent on three factors: the respiratory workload, the respiratory muscle strength, and the ventilatory drive (Fig. 1). Chronic hypercapnic respiratory failure can result from one or more of these abnormalities: inadequate ventilatory drive, excessive respiratory load, and inadequate inspiratory muscle strength.

Ventilatory Drive

Reduction in the output of the respiratory centers to respiratory muscles leads to reduced VA and to CO2 retention. Although this is the least common of the major causes of ventilatory failure, it can contribute to exacerbation of ventilatory failure resulting from other causes. Acute failure of ventilatory drive most often results from overdoses of sedative or narcotic drugs, especially opiates and benzodiazepines. In patients with other causes of ventilatory pump failure, metabolic alkalosis or administration of excessive oxygen can contribute to reduction in VA and exacerbate hypercapnia. Myxedema due to hypothyroidism (11) and idiopathic congenital central hypoventilation syndrome, in which chemoresponsiveness is reduced or absent when asleep (12), are two conditions characterized by inadequate ventilatory drive that result in chronic hypercapnia. Much more commonly, the onset of normal sleep is accompanied by a reduction in ventilatory responsiveness and a small increase in PaCO2. This reduction in the central drive and in respiratory muscle tone is important when other causes of respiratory failure are only just being compensated for by the waking drive to breathe.

Respiratory Load

During spontaneous breathing the inspiratory muscles must generate sufficient force to overcome the elastic and resistive load of the respiratory system. The pressure developed by the inspiratory muscles per breath (Pi) is increased if the elastic (decreased compliance of the lungs or the chest wall) or resistive (airway obstruction) load is increased. Furthermore, in patients with hyperinflation of the chest wall (see below), a substantial effort must be
made by the inspiratory muscles to overcome intrinsic positive end-expiratory alveolar pressure (PEEPi) before any inspiratory airflow can occur (13,14). This threshold load can account for a significant proportion of the respiratory workload in patients with COPD during acute exacerbations or during the weaning process from mechanical ventilation (15). If the pressure required for breathing (PI) becomes greater than 60% of maximum inspiratory pressure (MIP), the load cannot be sustained indefinitely and inspiratory muscles are at risk of fatigue (16). Bellemare and Grassino also observed that the Pi/MIP that can be sustained indefinitely decreases when Ti/Ttot increases and that the product of Pi/MIP and Ti/Ttot (the “tension-time index”) is related to the endurance time (17). When the tension-time index becomes greater than a critical value (0.15 for the diaphragm), there is risk of inspiratory muscle fatigue and pump failure (17).

Respiratory Muscle Strength

The maximum pressure-generating capacity of inspiratory muscles can be impaired by several causes (Table 3). Like all skeletal muscles, the strength of respiratory muscles depends on the length-tension relationship (18). Hyperinflation reduces inspiratory muscle strength by shortening the inspiratory muscles, especially the diaphragm, below their optimum force-producing length (18,19). Neuromuscular disorders can affect respiratory muscles; among patients without intrinsic pulmonary or chest wall disease, chronic hypercapnic respiratory failure usually occurs when the respiratory muscle strength falls below 30% of the predicted value (20). Muscle wasting due to malnutrition does not spare respiratory muscles (21). Several metabolic factors can also reduce the strength of otherwise normal respiratory muscles. Hypercapnia and hypoxemia have been reported to reduce diaphragmatic strength (22) and the endurance of inspiratory muscles (23). Corticosteroid treatment (24), hypocalcemia (25), hypophosphatemia (26), hypokalemia, and hypomagnesemia (27) may be additional contributory factors acting in concert with malnutrition to promote generalized respiratory muscle weakness in patients with chronic respiratory diseases.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Causes of Reduced Respiratory Muscle Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuromuscular disorders</td>
<td></td>
</tr>
<tr>
<td>Hyperinflation</td>
<td></td>
</tr>
<tr>
<td>Malnutrition</td>
<td></td>
</tr>
<tr>
<td>Electrolyte disorders</td>
<td></td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td></td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td></td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td></td>
</tr>
<tr>
<td>Hypokalemia</td>
<td></td>
</tr>
<tr>
<td>Hypoxemia</td>
<td></td>
</tr>
<tr>
<td>Hypercapnia</td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
</tr>
<tr>
<td>Aminoglycoside antibiotics</td>
<td></td>
</tr>
<tr>
<td>Disuse</td>
<td></td>
</tr>
<tr>
<td>Controlled mechanical ventilation</td>
<td></td>
</tr>
</tbody>
</table>
IV. Some Specific Diseases Associated with Respiratory Failure

A. COPD

Abnormalities of gas exchange are infrequent in COPD at rest before the forced expiratory volume in the first second (FEV1) has fallen to 50% of the predicted value or less. Thereafter, hypoxemia becomes increasingly more frequent, as lung mechanics worsen. The additional worsening of lung mechanics that accompanies an exacerbation can merit acute oxygen therapy, the characteristic increase in static lung volumes being accompanied by lower VA/Q units. These changes resolve slowly during recovery, but PaO2 can improve enough for domiciliary oxygen to be no longer needed. Inappropriately, severe hypoxemia in an exacerbating COPD patient raises the possibility of coincident pathology, such as cardiogenic pulmonary edema or acute pulmonary embolization, which is now more readily diagnosed with a computed tomographic (CT) pulmonary angiogram. Acute increases in low VA/Q units cause hypercapnia and worsening acidosis, which predicts both an increased mortality and the need for ventilatory support.

Although chronic hypercapnic respiratory failure is a common and important event in patients with severe COPD (28), the mechanisms leading to its occurrence are not completely understood. There is a considerable variability in the relationship of PaCO2 to indices of airway obstruction or V/Q mismatch (29,30), suggesting that factors other than lung pathology may be relevant. Neural drive assessed by measuring mouth occlusion pressure (6,7) or electromyographic activity of diaphragm (7) has been found to be higher in both eucapnic and hypercapnic patients with COPD than in normals. Given the increase in VD/VT ratio that characterizes COPD, normocapnia can be maintained only by increasing VE to a sufficiently high level. Mechanical constraint to breathing can, however, cause problems in maintaining a sufficiently high level of ventilation in patients with COPD. On the one hand, the load placed on the inspiratory muscles is increased because of high airflow resistance, reduced dynamic compliance, and presence of dynamic hyperinflation with PEEPi. On the other hand, the pressure-generating ability of respiratory muscles can be impaired because of hyperinflation, malnutrition, drug therapy, and electrolytes abnormalities (31). Bégin and Grassino (8) have shown in a large group of COPD patients that the probability of developing hypercapnia increases with the severity of airway obstruction, obesity, and inspiratory muscle weakness. When the load placed on the respiratory muscle pump becomes excessive in relation to its capacity, patients may avoid respiratory muscle fatigue and pump failure by modifying the breathing pattern. A reduction in VT could allow COPD patients to reduce PI relative to inspiratory muscle strength, thus minimizing respiratory effort and dyspnea, and avoiding fatigue (32). In line with this hypothesis a more rapid and shallower pattern of breathing has frequently been observed in hypercapnic than in eucapnic COPD patients (6,7,33–35). More recently, it has been shown that in stable COPD patients with severe airflow obstruction there was a significant association between hypercapnia and both shallow breathing and inspiratory muscle weakness, these variables explaining more than 70% of variance in PaCO2 (9). In this study VT was related directly to Ti, indicating that a small VT is primarily the consequence of alteration in respiratory timing (9).

The mechanisms leading to alteration in respiratory timing in patients with COPD have not yet been clearly defined. In line with the concept that the perception of inspiratory
effort and dyspnea is closely linked to the PI relative to inspiratory muscle strength (36), it is possible that reduction in Ti and VT involves an integrated response of the respiratory system to the perception of breathlessness. Studies showing an inverse relationship between Ti and PI relative to inspiratory muscle strength, and a significant association of the severity of dyspnea with both the increase in PI and the decrease in Ti, support the above hypothesis (9). In conclusion, it seems evident that patients with COPD alter the pattern of breathing in an attempt to optimize the performance of respiratory muscles, to reduce breathlessness, and to prevent fatigue. The rapid shallow breathing however reduces VA and increases PaCO₂.

B. Restrictive Disorders

Neuromuscular Diseases

Ventilatory failure, often in association with pneumonia, is a frequent cause of death in many neuromuscular disorders. Severe weakness of the respiratory muscles produces a restrictive pattern with decrease in vital capacity and total lung capacity, whereas functional residual capacity generally tends to be low and the residual volume is within normal limits (37,38). Hypercapnia is likely when respiratory muscle strength falls to 30% of the predicted value (20). Chronic respiratory failure in patients with subacute or chronic neuromuscular diseases is not simply due to the direct effect of weakness of respiratory muscles leading to inability to inflate the lungs and alveolar hypoventilation. A variety of additional factors play a role, including alteration in the mechanical properties of the lung (37,38) and the chest wall (39), respiratory abnormalities during sleep (40–45), and inability to cough (46). Abnormalities during sleep, including frequent arousals, decreased rapid eye movement sleep, hypoventilation, and hypoxemia, are common in patients with neuromuscular diseases (40–45), particularly in those with severe diaphragmatic weakness (42,45). These abnormalities usually precede and probably contribute to daytime ventilatory failure (40,43,44). The effectiveness of cough is reduced in patients with neuromuscular diseases because of both inspiratory and expiratory muscle weakness. Inspiratory muscle weakness affects the inspiratory phase of cough and expiratory muscle weakness reduces the cough-induced dynamic compression and hence the linear velocity of airflow through the large intrathoracic airways (46). As a result the clearance of secretions is defective in these patients, thus contributing to the high prevalence of bronchopulmonary infections. Finally, in patients with neuromuscular diseases, chronic hypercapnic respiratory failure is associated with rapid shallow breathing leading to alveolar hypoventilation (10), probably as a result of afferent signals in weakened respiratory muscles, intrapulmonary receptors, or both (10,47).

Thoracic Deformity

In patients with kyphoscoliosis the severity is quantified by measuring the angle between the upper and lower portions of the spinal curve (Cobb angle). When this angle exceeds 100° (severe scoliosis), the vital capacity falls below 50% of the predicted value (48). A major factor in the pathophysiology of chronic respiratory failure in patients with kyphoscoliosis is the decrease in the compliance of the chest wall and lungs (49,50). In severe scoliosis the compliance of the chest wall may be about 25% of the predicted value.
Furthermore, the spinal deformity causes inefficient coupling between the respiratory muscles and the chest wall, with reduction in the maximum pressure-generating capacity of inspiratory and expiratory muscles (49,51). The imbalance between the increased elastic load and the reduced capacity of respiratory muscles elicits a rapid and shallow pattern of breathing (52). Although this breathing pattern does have the advantage of minimizing the work of breathing, it causes alveolar hypoventilation. Like patients with neuromuscular disorders, patients with kyphoscoliosis develop sleep-disordered breathing, especially during rapid eye movement sleep (53).

Obesity Hypoventilation Syndrome

The obesity hypoventilation syndrome (OHS) was originally described in 1955 in subjects with severe obesity, chronic hypercapnic respiratory failure, polycythemia, hypersomnolence, and right ventricular failure (54). The pathogenesis of OHS is certainly multifactorial in nature and not fully understood. Abnormalities of chest wall mechanics with increased work of breathing, reduction in inspiratory muscle strength, hypoventilation during sleep, and abnormalities in ventilatory control with blunting of both hypercapnic and hypoxic ventilatory responsiveness could explain chronic hypoventilation in these patients (55). Clinically, it is important to distinguish this condition from obstructive sleep apnea (OSA) with overlap. OSA is a common condition, often a result of obesity, and when it coexists with significant airflow obstruction or chronic heart failure, hypoxemia with CO₂ retention can occur. Marked daytime somnolence is characteristic of these patients, and they do well with continuous positive airway pressure rather than ventilatory support, often correcting their gas exchange abnormality as their hypersomnolence resolves.

References

References

Contents

Part VII: Chronic Respiratory Failure in Different Patient Groups

Part VIII: Perspectives on Long-Term Ventilation

Part IX: Worldwide Approaches to Long-Term Ventilation

Index 563
1 Chapter 1. Chronic Respiratory Failure

2 Chapter 2. Principles of Positive Pressure Mechanical Ventilatory Support

Table 3 Recent Innovations in Mechanical Ventilation

<table>
<thead>
<tr>
<th>Innovation</th>
<th>Clinical Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Modes</td>
<td></td>
</tr>
<tr>
<td>Proportional assist ventilation</td>
<td>Interactive mode that adjusts pressure and flow according to spontaneous flow</td>
</tr>
<tr>
<td>Adaptive support ventilation</td>
<td>Feedback mode that adjusts minute ventilation to patient mechanics</td>
</tr>
<tr>
<td>Neurally adjusted ventilatory</td>
<td></td>
</tr>
<tr>
<td>assist</td>
<td>Adjusts interactive support to diaphragm EMG signal</td>
</tr>
<tr>
<td>Computerized pressure support</td>
<td>Adjusts pressure support to the ventilatory pattern and exhaled CO₂</td>
</tr>
<tr>
<td>New Adjusters for Interactive Breaths</td>
<td></td>
</tr>
<tr>
<td>Automatic tube compensation</td>
<td>Adjusts airway pressure to compensate for endotracheal tube resistance</td>
</tr>
<tr>
<td>Pressure slope/rise time</td>
<td>Adjusts rate of pressure rise for synchrony</td>
</tr>
<tr>
<td>Pressure support cycle adjust</td>
<td>Adjusts pressure support flow cycle criteria for synchrony</td>
</tr>
<tr>
<td>New monitors</td>
<td></td>
</tr>
<tr>
<td>Esophageal pressure</td>
<td>Approximates pleural pressure</td>
</tr>
</tbody>
</table>
Trend monitors Allows for data storage

Remote systems Allows for central monitoring

Pressure volume plots Allows for selection of settings that avoid overdistention and collapse/reopening

Spontaneous breathing trials Allows for assessment of discontinuation potential

Abbreviations: EMG, electromyogram; CO₂, carbon dioxide.

17. Kacmarek RM, Pierson DJ, eds. AARC Conference on positive end expiratory pressure. Respir Care 1988; 33:419-527.

30. Banner MJ, Kirby RR, MacIntyre NR. Patient and ventilator work of breathing and ventilatory muscle loads at different levels of pressure support ventilation. Chest 1991; 100:531-533.

32. Marini JJ. Exertion during ventilator support: how much and how important? Respir Care 1986; 31:385-387.

37. Stroetz RW, Hubmayr RD. Patient-ventilator

49. Mead J, Takishima T, Leith D. Stress distribution in

22. Buyse B, Messerman W, Demedts M. Treatment of chronic respiratory failure in kyphoscoliosis: oxygen or

34. Fogarty A, Hubbard R, Britton J. International

4 Chapter 4. Size of the Problem, What Constitutes Prolonged Mechanical Ventilation, Natural History, Epidemiology

82. Epstein SK. Predicting extubation failure: is it in (on) the cards? Chest 2001; 120(4): 1061-1063.

83. MacIntyre NR, Cook DJ, Ely EW Jr., et al, Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001; 120(6 suppl):375S-395S.

Chapter 5. Causes of Difficult Weaning: Which Mechanisms Are Associated with Long-Term Ventilator Dependence?

45. Cooper KR, Phillips BA. Effect of short-term sleep loss

123. Holliday JE, Myers TM. The reduction of weaning time

Chapter 6. Weaning Protocols, Including Noninvasive Ventilation

Chapter 7A. Weaning Units: The U.S. Perspective

12. Gracey DR, Naessens JM, Viggiano RW, et al. Outcome of

Chapter 7B. Weaning in a Specialized Facility

34. Indihar FJ. A 10-year report of patients in a prolonged

Chapter 8. Organization of Rehabilitation in the ICU

Figure 10 Patients requiring >21 days MV in 3 separate ICUs across the SWCCN during 2005.

Abbreviation: MV = mechanical ventilation.

11. Pronovost P, Berenholtz S, Ngo K, et al. Developing and

Once Sarah was placed into the long-term phase of the rehabilitation framework, all active
weaning from MV was stopped and the nurse consultant, the lead doctor, and the PT made a comprehensive and holistic assessment. Further advice was sought from the dietician, the speech and language therapist, and the pharmacist. An overall plan was then developed, which included the following: 1. Providing full support for respiratory muscles during and between exercise sessions. 2. Increasing PS, PEEP, and Fi O 2 during exercises. 3. Decreasing ventilatory support only after Sarah demonstrated significant improvement in exercise tolerance, as measured by maximum inspiratory measure (P imax), modified Borg scale, and functional independence measure. 4. Setting daily goals with Sarah, team, and family. 5. Sarah, dressing in her normal clothes during the day. 6. Not stopping therapy, but adapting it to meet Sarah’s ability and medical condition. 7. Establishing communication strategies through leak speech. 8. Increasing calories when exercise tolerance increased. 9. Establishing following alternative therapies: 1 Pet therapy once per week 1 Music 1 Art 1 Guided imagery 1 Biofeedback 1 Reflexology 10. Monitoring reduced to a minimum.

Specific exercise program: 1. To sit out twice daily, progressing to all day 2. Standing transfers, bed to chair 3. Hourly breathing exercises 4. Resisted upper limb exercises using weights 5. Resisted trunk exercises 6. Treadmill work in the gym, while on portable ventilator. 1 Progression in time or speed as per tolerance-defined as; SpO 2 < 85% or patient fatigue using a dyspnea visual analogue scale. 1 Use of Heliox during treadmill exercise entrained through the ventilator 7. Step ups.

Within three weeks of starting rehabilitation Sarah was weaned and decannulated. Table A1 shows Sarah’s exercise tolerance over the three-week period.

<table>
<thead>
<tr>
<th>Day 1, week 1</th>
<th>4 m (on pressure support ventilation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 5, week 1</td>
<td>120 m (on pressure support ventilation)</td>
</tr>
<tr>
<td>Week 2</td>
<td>280 m (on pressure support ventilation)</td>
</tr>
<tr>
<td>Day 18, week 3</td>
<td>108 m (using entrained heliox via ventilator on reduced pressure support)</td>
</tr>
</tbody>
</table>
Day 20, week 3: 67 m on a tracheostomy mask using heliox

Day 21, week 3: 80 m following decannulation

Day 25: 120 m prior to discharge on oxygen only
Chapter 9. Indications and Physiological Basis of Rehabilitation in the ICU

10 Chapter 10. Peripheral and Respiratory Muscle Training

46. Williams PE. Use of intermittent stretch in the prevention of serial sarcomere loss in immobilised muscle.

58. Chang AT, Boots RJ, Brown MG, et al. Reduced inspiratory muscle endurance following successful weaning

11 Chapter 11. Transcutaneous Electrical Muscle Stimulation

44. Plankeel JF, McMullen B, MacIntyre NR. Exercise outcomes after pulmonary rehabilitation depend on the initial mechanism of exercise limitation among non-oxygen-dependent COPD patients. Chest 2005;

76. Troosters T, Gosselink R, Decramer M. Chronic obstructive pulmonary disease and chronic heart failure:

86. Brown MD, Cotter MA, Hudlicka O, et al. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit

97. Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther

Chapter 12. Psychological Aspects in Patients with Chronic Respiratory Failure

25. Wong HLC, Lopez-Nahas V, Molassiotis A. Effects of

Chapter 13. Definition and Indications for Prolonged Mechanical Ventilation (PMV)

1. Mulligan S. AARC and Gallup estimate numbers and costs for chronic ventilator patients. Am Assoc Respir Care Times 1991; 150:30-36.

11. Lin CC. Comparison between nocturnal nasal positive pressure ventilation combined with oxygen therapy and

33. American College of Chest Physician. Mechanical
ventilation beyond the intensive care unit. Chest 1998; 113(5 suppl):289s-344s.

15 Chapter 15. The Multidisciplinary Team Training and Experience

16 Chapter 16. Clinical Experience in a CAVC Unit

Chapter 17. Indications and Outcome of Noninvasive Ventilatory Support in Restrictive and Obstructive Disorders

pulse oximetry/cutaneous carbon dioxide tension monitoring during colonoscopies: pilot study with a smart ear clip. Digestion 2004; 70:152-158.

67. Lofaso F, Quera-Salva MA. Polysomnography for the management of progressive neuromuscular diseases. Eur

78. Gomez-Merino E, Bach JR. Duchenne muscular dystrophy:

122. McKim DA, LeBlanc C. Maintaining an “Oral Tradition”: specific equipment requirements for mouthpiece ventilation
instead of tracheostomy for Neuromuscular Disease. Respir Care 2006; 51:297-298.

134. Wicks AB, Menter RR. Long-term outlook in quadriplegic

144. Gay PC, Hubmayr RD, Stroetz RW. Efficacy of nocturnal nasal ventilation in stable, severe chronic obstructive

18 Chapter 18. Choice of Devices, Ventilatorys, Inferences, and Monitors

19 Chapter 19. Training the Home Health Team

Chapter 21. Health-Related Quality of Life

22 Chapter 22. Legal and Ethical Issues

1. The Ethox Centre, Department of Public Health and Primary Health Care, University of Oxford, www.ethox.org.uk

13. Hardart MK, Burns JP, Truong RD. Respiratory support in spinal muscular atrophy-type I: a survey of physician

Chapter 23. Pharmacological Treatment for Patients with Chronic Respiratory Failure

Chapter 24. Patient-Ventilator Interfaces for Invasive and Noninvasive Ventilation

44. Hill NS. Complications of noninvasive ventilation. Respir Care 2000; 45:480-481.

Chapter 25. Tracheostomy Weaning from Longer Term Ventilation

11. Sinha R, Bergofsky EH. Prolonged alteration of lung mechanics in kyphoscoliosis by positive pressure

15. MacIntyre NR, Cook DJ, Ely EW Jr., et al., American College of Chest Physicians, American Association for Respiratory Care, American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001; 120(Suppl):375S-379S.

33. Vallverdu I, Calaf N, Subirana M. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med

42. Hess DR. Noninvasive positive-pressure ventilation and ventilator-associated pneumonia. Respir Care 2005; 50(7):924-929, discussion 929-931.

62. Rossi A. Noninvasive ventilation has not been shown to be ineffective in stable COPD. Am J Respir Crit Care Med 2000; 161(3 pt 1):688-689.

27 Chapter 27. Electrophrenic Respiration

28 Chapter 28. Secretion Management

12. Servera E, Sancho J, Zafra MJ. Cough and neuromuscular

82. Bach JR. Cough in SCI patients. Arch Phys Med Rehabil

29 Chapter 29. The Importance of Overnight Monitoring in the Management of Chronic Respiratory Failure

31 Chapter 31. Nutrition in ICU

24. Sullivan DH, Bopp MM, Roberson PK. Protein-energy undernutrition and life-threatening complications among the

47. ASPEN Board of Directors and the Clinical Guidelines Task Force. Guidelines for the use of parenteral and

Chapter 32. Skin Integrity, Bowel and Bladder Care

Chapter 33. Palliative Care for the Ventilator Patient: End-of-Life Issues and Approaches

11. Desbiens Nam Wu AW. Pain and suffering in seriously ill

36. Guo YF, Sforza E, Janssens JP. Respiratory patterns
during sleep in OHS patients support. Chest 2007; 131:1090-1099.

35 Chapter 35. Progressive Neuromuscular and Degenerative Diseases

21. Sivasothy P, Smith IE, Shneerson JM. Mask intermittent positive pressure ventilation in chronic hypercapnic

31. Windisch W, Kostic S, Dreher M, et al. Outcome of

37 Chapter 37. Ventilation Among the Pediatric Population

38 Chapter 38. The Perspective of Patients

32. Schmid H, Hasenfeld Y. Organizational dilemmas in the provision of home-care services. Soc Serv Rev 1993; 67:40-54.

Chapter 39. The Perspective of Family and Caregivers

8. Writing Angel. Solutions for Living, PO Box 36116, Canton, Ohio, U.S.A., 44735 (888-8845483) www.solutionsforliving.us.

40 Chapter 40. The Perspective of Physicians: The Intensive Care Specialist and the Pulmonary Specialist

7. MacIntyre NR, Cook DJ, Ely EW Jr., et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001; 120(6 suppl):375S–395S.

41 Chapter 41. The Perspective of the Allied Health Professionals

Chapter 43. Long-Term Ventilation: The European Perspective

Chapter 44. Long-Term Ventilation: The South American Perspective

46 Chapter 46. Long-Term Ventilation: The Taiwanese Perspective

3. The Ventilator Dependents Managed Care Demonstration, Bureau of National Health Insurance. Available at:

