THE GREEN BRAID
Towards an Architecture of Ecology, Economy and Equity
EDITED BY KIM TANZER AND RAFAEL LONGORIA

An ACSA Reader
THE GREEN BRAID

Drawn from over fifteen years of peer-reviewed essays and design awards published by the Association of Collegiate Schools of Architecture (A.C.S.A.), The Green Braid presents the discipline's best thinking in written, drawn and built form.

Using essays that alternately revise and elucidate contemporary architectural thinking, this book situates sustainability at the center of best architectural design practices. By addressing sustainability within the context of architectural history, theory, pedagogy and design, The Green Braid provides an ideal studio companion for both students and professionals seeking to frame their architectural production in a sustainable manner.

Kim Tanzer is Professor of Architecture at the University of Florida and an architect practicing in Gainesville.

Rafael Longoria is Professor of Architecture at the University of Houston and co-editor of A.U.L.A.: Architecture and Urbanism in Las Américas.
THE A.C.S.A. ARCHITECTURAL EDUCATION SERIES
The intent of the Architectural Education Series is to produce Readers for use across the curriculum in architecture and design programs matching current lines of scholarly inquiry with curricular needs. Each reader focuses on a thematic topic and is composed of chapters presented originally at A.C.S.A. conferences along with invited chapters. Leading edge design work and scholarship are included to give faculty, students and professionals resources for the studio and classroom.

SERIES EDITORIAL BOARD
Michael Benedikt, University of Texas at Austin
Luis Carranza, Roger Williams University
Thomas Fisher, University of Minnesota
Lisa Iwamoto, University of California at Berkeley
Fernando Luiz Lara, University of Michigan
John Stuart, Florida International University

ABOUT A.C.S.A.
The Association of Collegiate Schools of Architecture (A.C.S.A.) is a non-profit organization founded in 1912 to enhance the quality of architectural education. School membership in A.C.S.A. has grown from 10 charter schools to more than 200 schools in several membership categories worldwide. Through these schools, more than 5,000 architecture faculty members are represented in A.C.S.A.’s membership. A.C.S.A., unique in its representative role for professional schools of architecture in the United States and Canada, provides a major forum for ideas on the leading edge of architectural thought. Issues that will affect the architectural profession in the future are being examined today in A.C.S.A. member schools. Additional information is available at www.acsa-arch.org.
THE GREEN BRAID

Towards an architecture of ecology, economy, and equity

EDITED BY KIM TANZER AND RAFAEL LONGORIA
CONTENTS

Notes on contributors ix
Preface xv
Acknowledgments xvii

THE GREEN BRAID 1

Introduction: Networked ways of knowing 3
Kim Tanzer and Rafael Longoria

Architecture, ecological design, and human ecology 15
David Orr
A new social contract: Equity and sustainable development 34
Thomas Fisher
Economic sustainability in the post-industrial landscape 44
Ellen Dunham-Jones
Models, lists, and the evolution of sustainable architecture 60
Steven A. Moore

META-DISCOURSES IN PEDAGOGY AND PRACTICE 75

Introduction 77
Kim Tanzer and Rafael Longoria

Cyborg theories and situated knowledges: Some speculations on a cultural approach to technology 82
Barbara L. Allen
We are no[w here]: A social critique of contemporary theory 91
Anthony W. Schuman
The hidden influence of historical scholarship on design 101
Norman Crowe
Culture and the recalibration of first ring suburbs 113
William F. Conway and Marcy Schulte
Portable Construction Training Center 122
Jennifer Siegal and Laurence Scarpa
Mobile ECO LAB 124
Jennifer Siegal
One week, eight hours 127
Felecia Davis
CONTENTS

PHENOMENA AND TECHNOLOGY 135

Introduction 137
Kim Tanzer and Rafael Longoria

From L’Air Exact to L’Aérateur: Ventilation and its evolution in the architectural work of Le Corbusier 140
Harris Sobin

Unhealthy energy conservation practices 153
Phillip G. Mead

Good-bye, Willis Carrier 160
D. Michelle Addington

The Compass House 173
Thomas Hartman

Scupper houses, or the dogtrot house and the shotgun house reconsidered 179
Brian D. Andrews and W. Jude LeBlanc

An affordable, sustainable house: Richmond, Virginia, 1993 184
William Sherman

Phenomenal surface: Fog House 188
Lisa Iwamoto and Craig Scott

BUILDING PRACTICES 193

Introduction 195
Kim Tanzer and Rafael Longoria

Poetic Engineering and Invention: Arthur Troutner, architect, and the development of engineered lumber 199
Jonathan Reich

Terunobu Fujimori: Working with Japan’s small production facilities 212
Dana Buntrock

Making SmartWrap: From parts to pixels 223
Karl Wallick

Quilting with glass, cedar, and fir: A workshop and studio in Rossland, BC 234
Robert Barnstone

Navy Demonstration Project 238
Robert Barnstone

Modernism redux: A study in light, surface, and volume 241
Grace La and James Dallman

Solar Sails and the triad of sustainability 246
Mahesh Senagala

vi

SETTLEMENT PATTERNS 251

Introduction 253

Kim Tanzer and Rafael Longoria

Economy = Ecology: A scenario for Chicago’s Lake Calumet 256

Ellen Grimes

Sarajevo: Ecological reconstruction after the “urbicide” 271

Srdja Hrisafovic

The suburban critique at mid-century: A case study 281

Anthony Denzer

I-10 The Gulf Coast States/mall housing 292

Brian D. Andrews and W. Jude LeBlanc

Community redevelopment for a small town in Florida 296

Stephen Luoni

Drifting urbanism 299

Stephen Luoni

The role of infrastructure in the production of public spaces for the city of Miami 301

Mónica Ponce de León and Nader Tehrani

THE SHARED REALM 305

Introduction 307

Kim Tanzer and Rafael Longoria

Architectural invention and the postcolonial era: The Tjibaou Cultural Center in New Caledonia by the Renzo Piano Building Workshop 311

Lisa R. Findley

History, tradition, and modernity: Urbanism and cultural change in Chanderi, India 329

Jyoti Hosagrahar

Global constructions, or why Guadalajara wants a Home Depot while Los Angeles wants construction workers 341

Carlos Martín

A raptor enclosure for the Zuni pueblo: Construction and reconsideration 351

Claude E. Armstrong and Donna L. Cohen

Garden of time, landscape of change: Women Suffrage Memorial, St. Paul, Minnesota, 1996 355

Raveevarn Choksombatchai and Ralph Kirk Nelson
CONTENTS

Unmasking urban traces 361
 Jeanine Centouri with Craig Barton, Mildred Howard,
 James Rojas, and Dean Sakamoto

Index 366
NOTES ON CONTRIBUTORS

D. Michelle Addington is trained as both an architect and an engineer whose teaching and research explore physical phenomena. An associate professor of architecture at Harvard’s Graduate School of Design, she teaches courses in energy, the environment, advanced technologies, and new materials. She is co-author of Smart Materials and Technologies for the Architecture and Design Professions.

Barbara L. Allen has written extensively on issues of sustainability and environmental justice. Her book Uneasy Alchemy: Citizens and Experts in Louisiana’s Chemical Corridor Disputes (2003) examined the politics of local knowledge and professional expertise. She is currently the director of the graduate program in science and technology studies at Virginia Tech’s D.C.-area campus. From 1999 to 2007, Allen was the executive editor of the Journal of Architectural Education.

Brian D. Andrews joined the U.S.C. architecture faculty after teaching at the University of Virginia, Syracuse University and Clemson University, where he was the Robert Mills Distinguished Professor. His teaching and research revolve around drawing and representation, and currently he is working on a book about the Asilo Sant Elia by Terragni. Besides teaching, he has his own architectural practice in Los Angeles. Andrews and W. Jude LeBlanc continue to collaborate on speculative research projects and buildings.

Claude E. Armstrong (see Donna L. Cohen and Claude E. Armstrong)

Robert Barnstone is Associate Professor at Washington State University and is engaged in the exploration of boundaries between sculpture and building. He has sculpture installations in Paris, New York and Los Angeles. He recently completed the first plastic wood composite building in history at W.M.E.L. and is currently at T.U./Delft building a cardboard house. His work has been recognized in AD, Onsite, JAE, Azure, and Sculpture magazine.

Craig Barton is an associate professor and Director of Programs in Architecture at the University of Virginia. Prior to this appointment he was a Loeb Fellow at Harvard University’s Graduate School of Design. He is editor of the anthology, Sites of Memory: Perspectives on Architecture and Race, published by Princeton Architectural Press in 2001.

Jeanine Centouri is a principal of UrbanRock Design in Los Angeles and a professor of architecture at Woodbury University. Her practice and research focus on the intersection between public space, public art, and
architecture. “Finding Public Space in the Margins” received several awards including a *Progressive Architecture* Citation and a Best of Category in concepts from *ID* magazine.

Raveevarn Choksombatchai is an associate professor in architecture design at the University of California at Berkeley. She is a former partner of *Loom*, which she co-founded with Ralph Nelson in 1993. *Loom* was the recipient of three Progressive Architecture awards and citations, was selected for Emerging Voices in Architecture by the Architecture League of New York, and was nominated for both a Chrysler Design Award and the Cooper Hewitt National Design Museum’s National Design Award in the area of environmental design.

Donna L. Cohen and Claude E. Armstrong have been practicing together since 1982, beginning with architectural projects for American artist Donald Judd. Since that time they have earned national and international awards for their design of contemporary architecture in culturally significant sites. Cohen and Armstrong are both on the faculty of the University of Florida College of Design Construction and Planning.

William F. Conway is an associate professor of architecture at the University of Minnesota. He has worked in architectural offices in Fargo, Boston, Rome, Italy and the office of Cesar Pelli and Associates. The recipient of a Fulbright fellowship and Winchester traveling fellowship, he was a visiting artist at the American Academy in Rome. Conway and Marcy Schulte established their architectural firm in Ames, Iowa in 1994. Their practice has been recognized for its work in the design of public places.

Norman Crowe, Professor of Architecture at the University of Notre Dame, is the author of *Nature and the Idea of a Man-Made World* (1995). His teaching and research focus on urban design and on environmental issues as related to architecture and urbanism.

James Dallman is a principal of La Dallman Architects. Through projects of intentionally diverse scale and program, the design studio transforms the public realm through infrastructural interventions and redefinition of public space. Most recently, the studio was awarded the second prize in the International West End Pedestrian Bridge Competition in Pittsburgh, as well as four American Institute of Architects Wisconsin Design Awards.

Felecia Davis is an assistant professor at the College of Art, Architecture and Planning in the Department of Architecture at Cornell University and co-founder of Colab Architecture in Ithaca, New York. Much of Davis’s speculative work focuses on the intersections of built form and cultural practice that proposes architecture as a performative art.

Anthony Denzer is Assistant Professor of Architectural Engineering at the University of Wyoming. This article was drawn from his Ph.D. dissertation, “Gregory Ain and the Social Politics of Housing Design” (2005).

Ellen Dunham-Jones is the Director of the architecture program at the Georgia Institute of Technology. She serves on the Board of Directors of
the Congress for the New Urbanism, the editorial board of the journal *Places*, and the executive board of ULI-Atlanta. She is currently co-writing a book on retrofitting suburbs.

Lisa R. Findley is an associate professor at the California College of the Arts in San Francisco, where she coordinates the M.Arch. program. She is also an architectural journalist and a contributing editor for *Architectural Record*. This article is an early version of a chapter of her book *Building Change: Architecture, Politics and Cultural Agency* (2005).

Thomas Fisher is Dean of the College of Design at the University of Minnesota. He has published twenty-four book chapters and 246 major articles in various journals, and has written three books: *In the Scheme of Things: Alternative Thinking on the Practice of Architecture, Salmela Architect*, and *Lake/Flato: Buildings and Landscapes*.

Ellen Grimes is an architectural designer practicing in Chicago. She is Assistant Professor at the University of Illinois at Chicago and a board member of the Center for Research in Urban Ecology. Current projects include the Great Restoration Experiment, a research infrastructure at the Midewin National Tallgrass Prairie.

Thomas Hartman is Associate Professor at Arizona State University. A graduate of the École des Beaux Arts and a former collaborator of Renzo Piano, his teaching, writing and design work explores the transformation of constraints into opportunities.

Jyoti Hosagrahar is Director of Sustainable Urbanism International, an independent non-profit research and policy initiative. She teaches at Columbia University and earned her doctorate from the University of California, Berkeley. Hosagrahar is the author of *Indigenous Modernities: Negotiating Architecture and Urbanism* (2005).

Mildred Howard is a mixed-media and installation artist working in San Francisco. Her work has been shown in dozens of solo and group exhibitions, is held in a number of public collections and widely published in academic and popular presses.

Srdja Hrisafovic is a docent senior lecturer at Sarajevo’s Academy of Fine Arts and a principal of HandH Architects with over twenty years of teaching, applied research, working, and consulting in architecture, urban design, and environmental protection. Hrisafovic has advised local and regional governments in Bosnia and Herzegovina on issues of lighting and environment protection.

Lisa Iwamoto and Craig Scott are principals of IwamotoScott Architecture, a practice formed in 1998. IwamotoScott’s recent projects include: Jellyfish House for the Vitra Design Museum exhibition Open House; mOcean, a motion-capture installation for SFMoMA, 2005 *ID* Magazine Awards issue, IN-OUT Curtain; 2:1 House in Berkeley, California, and Fog House. Iwamoto is Assistant Professor in the Department of Architecture at the University of California, Berkeley.
NOTES ON CONTRIBUTORS

Grace La is a principal of La Dallman Architects and an associate professor at the University of Wisconsin-Milwaukee School of Architecture and Urban Planning. Professor La was awarded the 2005 UWM Distinguished Undergraduate Teaching Award, recognizing university-wide excellence in teaching, and received the 2002–3 Association of Collegiate Schools of Architecture National Faculty Design Award.

W. Jude LeBlanc is an associate professor of architecture at the Georgia Institute of Technology and practices architecture in Atlanta. His teaching and research interests include the relation of architecture to painting and film. LeBlanc and Brian D. Andrews continue to collaborate on speculative research projects and buildings. Their work has received several design awards, including Boston Society of Architects Unbuilt Architecture Awards, a Progressive Architecture Merit Award, and a housing award from Japan Architect.

Rafael Longoria is Professor of Architecture at the University of Houston and a principal of Longoria/Peters, a Houston-based architecture and urban design firm. He is a founding editor of AULA: Architecture and Urbanism in Las Américas, and has served on the editorial boards of the Journal of Architectural Education, CITE, and the Rice University Press. Longoria was recently inducted to Mexico's Academia Nacional de Arquitectura.

Stephen Luoni is Director of the University of Arkansas Community Design Center where he is the Steven L. Anderson Chair in Architecture and Urban Studies. He has taught at the University of Florida and the University of Minnesota.

Carlos Martín works in academia and government in the areas of technological and social change in building. Trained as an architect, construction engineer, and historian of technology at M.I.T., University of Michigan, and Stanford, Dr. Martín returned to the Department of Housing and Urban Development's Partnership for Advancing Technology in Housing (PATH) in 2004 after serving as the Salt River Project Professor of Energy and the Environment at Arizona State University.

Phillip G. Mead is Associate Professor of Architecture at the University of Idaho in Moscow. He has taught and practiced in California, Texas and Idaho and is a former student of Charles Moore. Currently Mead teaches modern architectural history, environmental control systems and studio where he integrates his research on the health impacts of light, air, views, and energy conservation into his projects.

Steven A. Moore is the Barlett Cocke Professor of Architecture and Planning at the University of Texas at Austin where he is Director of the graduate program in sustainable design and Co-Director of the University of Texas Center for Sustainable Development. He is the author of four books related to sustainable design. The most recent, Alternative Routes to the Sustainable City will appear in early 2007.
Ralph Kirk Nelson was a principal in *Loom*, founded in 1991 with Raveevarn Choksombatchai as an interdisciplinary art, architecture and environmental design firm. Among the firm’s projects are the Women’s Suffrage Memorial in San Francisco, and the Basil Café. Nelson received his M.Arch from Yale University.

David Orr is the Paul Sears Distinguished Professor of Environmental Studies and Politics and the Chair of the Environmental Studies Program at Oberlin College. He is also a James Marsh Professor-at-Large at the University of Vermont and the author of *Ecological Literacy* (1992), *Earth in Mind* (1994/2004), *The Nature of Design* (2002), *The Last Refuge* (2004), and *Design on the Edge* (2006).

Mónica Ponce de León is Professor of Architecture at Harvard University and a principal in the Boston-based design firm Office dA. In 2002 Ponce de León received the American Academy of Arts and Letters Award in Architecture.

James Rojas serves as Project Manager for the Metropolitan Transportation Authority of the City of Los Angeles, working on pedestrian and transportation enhancement projects. His work on Latino empowerment has been widely cited in architectural circles. He holds a Master of City Planning and a Master of Science in Architectural Studies from the Massachusetts Institute of Technology.

Jonathan Reich is an architect and Professor of Architecture at California Polytechnic State University in San Luis Obispo where he teaches an architectural design thesis studio and interdisciplinary courses in sustainable design which won the American Institute of Architects national award for “Ecological Literacy in Architectural Education” in 2005.

Dean Sakamoto is a critic and Director of Exhibits at Yale University, and a practicing architect. Based in New Haven, Conn. since 1986 he has garnered numerous awards for design and construction. He holds a B.Arch from the University of Oregon, and M.Arch from the Cranbrook Academy of Art and an M.E.D. from Yale University.

Lawrence Scarpa is a principal at Pugh+Scarpa in Santa Monica, California and an educator in design and construction technology with a special emphasis in sustainability. He is also a co-founder of Livable Places, Inc., a non-profit development company, and a member of the editorial board of *LA Architect*.

Marcy Schulte was a designer with the firm of Cesar Pelli and Associates from 1987 to 1991. Since that time Ms. Schulte has paralleled her work in practice with teaching. Her design studios and seminars at the University of Minnesota focus on the inquiry of cultural issues and urban settings in design. Schulte and William F. Conway established their architectural firm in Ames, Iowa in 1994.

Anthony W. Schuman is Graduate Program Director at the New Jersey School of Architecture and a past president of A.C.S.A. His articles on housing
design and urban development appear in ten books and numerous scholarly journals and conference proceedings. He serves on the Montclair (New Jersey) Housing Commission and several community development organizations in Newark.

Craig Scott (see Lisa Iwamoto and Craig Scott).

Mahesh Senagala is the Associate Dean for Research at the College of Architecture of the University of Texas at San Antonio. In addition to sustainable design, he is interested in the intersections of Batesonian systems theory, emerging technologies, smart architecture, tensile fabric structures, Latin American literature, and existentialism.

William Sherman is the Chair of the Department of Architecture and Landscape Architecture at the University of Virginia as well as a practicing architect. His teaching, research, and practice is focused on the interaction of buildings and dynamic natural forces in their role as incremental components of the urban infrastructure.

Jennifer Siegal is the Principal and Founder of Office of Mobile Design, an architecture/design studio that is dedicated to the exploration and production of prefabricated and portable eco-logic structures. She was a 2003 Loeb Fellow at Harvard University’s Graduate School of Design. Ms. Siegal is a professor at Woodbury University in Los Angeles and the editor of Mobile: The Art of Portable Architecture and Materials Monthly.

Harris Sobin is Professor Emeritus of Architecture at the University of Arizona, where he taught from 1970 to 2000. His published research includes work on Le Corbusier’s development of energy-related design and on the architect’s friendship with sculptor Costantino Nivola. He is currently preparing a book-length study provisionally entitled “From Science to Poetry: Le Corbusier and the Development of the New Environmental Envelope.”

Kim Tanzer is a professor of architecture at the University of Florida, where much of her work focuses on the transmission and transformation of architectural knowledge through human action. She has received local and national recognition for her work in social sustainability. She maintains an architectural practice in Gainesville, Florida.

Nader Tehrani is Adjunct Associate Professor of Architecture at Harvard’s Graduate School of Design. In partnership with Mónica Ponce de León, he heads the firm Office dA and has been practicing architecture in Boston since 1987.

Karl Wallick is an assistant professor at the School of Architecture and Interior Design at the University of Cincinnati where he focuses on issues of design and technology. In 2004 he was part of the SmartWrap project team at KieranTimberlake Associates in Philadelphia.
PREFACE

The essays and design projects selected for this book are primarily drawn from 15 years of peer-reviewed proceedings of the Association of Collegiate Schools of Architecture. Chosen from over a thousand contributions pertinent to the subject, they are intended to serve as holograms, each capturing a complete response to sustainability from a very particular point of view. Some are extremely timely, and serve today to record historic moments, while others escape considerations of fashion. Relatively few were written or designed by authors who considered themselves to be part of a sustainability movement. Rather, the essays reflect these scholars’ and designers’ commitment to design ethics consistent with what we today consider sustainability. Throughout the book we have paired essays with design projects to demonstrate the multiple ways of creating and disseminating knowledge—words, spaces, images—developed within our discipline. We have also invited four authors, David Orr, Ellen Dunham-Jones, Thomas Fisher, and Steven Moore to contribute essays. These essays, consciously interacting with the twining of the green braid metaphor—ecology, economy or equity—look holistically at contemporary architecture and environmental design issues.

The book has five sections. The first, “Meta-discourses in Pedagogy and Practice” focuses on the architecture curriculum and the role academic architects play in framing the sustainability discourse through their own teaching and practice. The second, “Phenomena and Technology” links the sensuous and the mechanical, with the goal of recognizing the earth’s elements as poetic design opportunities and functional constraints at the same time. The third, “Building Practices” focuses on atypical, sometimes marginalized, sometimes romanticized, ways of fabricating architecture. It provides evidence that changing a paradigm requires action in addition to reflection, and that a sustainable practice is one that, even more than most, sees constraints as opportunities. The fourth, “Settlement Patterns,” recognizes the crucial role location, spatial and political organization inevitably play in large scale developments’ sustainability. No amount of “greening” can compensate for a disconnected, polluted or unjust development pattern. The fifth, “The Shared Realm,” articulates most clearly the role architects play as part of a network of collaborators. These collaborators, the authors argue, include far more than consultants in allied fields. All people who have lived or will live amidst our creations are equally a part of each project’s construction, and to some degree, we must make their desires ours for a project to succeed.
ACKNOWLEDGMENTS

This project began in the year 2000, with the appointment of a national task force on sustainability by Tony Schuman, then President of the Association of Collegiate Schools of Architecture (A.C.S.A). Co-chaired by Kim Tanzer and Jean Gardner, this group of about fifty academic architects from around North America worked to cohere various threads of sustainability discourses and to raise the profile of this crucial ethical position regarding the practice of architecture. Their efforts were supported by subsequent presidents of the A.C.S.A., including Frances Bronet, Brad Grant, Geraldine Forbes, Rafael Longoria, Steven Schreiber and Ted Landsmark. In addition, members of the A.C.S.A. Board of Directors, beginning in 2000, lent their encouragement to this vital effort. Among the task force's goals was the dissemination of the significant body of knowledge, generated by our members, to compliment the growing wealth of information regarding sustainability and green building emerging in other realms. This book is the result.

In addition to the essential contributions described above, this book would not have been possible without the leadership of Michael Monti, Executive Director of the A.C.S.A. His thoughtfulness, patience and good humor have been critical lubricants when we reached inevitable points of friction. He has been assisted by Kevin Mitchell of the A.C.S.A. national office, who has ably coordinated much of the day-to-day work involved in producing a complicated, collaborative project.

We wish to thank our home institutions, the University of Florida and the University of Houston, for their support. At the University of Florida, Gary Ridgdill provided early assistance on behalf of the School of Architecture. His goodwill has been followed by that of Mary Kramer and Martha Kohen, in particular. At the outset, Jeff Huber worked to inventory sustainability-related essays in the Proceedings of the A.C.S.A. Annual Meetings over the past fifteen years. As we developed the final collection of essays, graduate architecture students worked through a much longer set under initial consideration, and made helpful editorial comments. They are Jason Canning, Craig Ditman, Toni Duce, Elvir Gazic, Carla Harvey, Michael Honig, Shih-Ping Lin, Ryan Parrish, Quilian Riano, Helen Schultz, Freida Speicher, Jennifer Stencel and Erica Walker. Harun Thomas provided critical and timely editorial assistance. At the University of Houston, Zui Lip Ng provided essential graphic assistance, and Stephen Fox, Jean Krchnak, Fernando Brave, Patrick Peters, Margaret Culbertson and the fantastic group at the William Jenkins Art and Architecture Library helped more than they realize.

A key principle of sustainability is that all efforts are situated within and responsive to a larger system. As highlighted above, the editors gratefully acknowledge the large and generous network of colleagues, families and friends that has supported this project.
INTRODUCTION
Networked ways of knowing
KIM TANZER AND RAFAEL LONGORIA

I prefer ‘both-and’ to ‘either-or,’ black and white, and sometimes gray to black or white.¹

In selecting essays for this book we have embraced the concept of sustainability popularized through the 1987 UNESCO Report, Our Common Future, also known as the Brundtland Report, after its primary author, Gro Harlem Brundtland, Prime Minister of Norway.² The report asserts “sustainability is defined as meeting today’s needs without compromising the ability of future generations to meet their own needs.” In the nearly twenty years since the report was issued, critics have challenged several of its key elements, specifically alleging it capitulates to continued human development and emphasizes human needs at the potential expense of nonhuman environmental needs.³ Nonetheless, the definition provides a minimal benchmark against which current human action can be measured. It also establishes, again, in a modest way, the principle that people have the responsibility to consider others’ needs—particularly future needs—in conjunction with their own needs. It suggests that a chain of responsible relationships replace the autonomous individual actor.

A second set of criteria, also following Brundtland, provided a further filter for the essays selected for this volume. Our Common Future asserted that three integrated behavioral trajectories are necessary to achieve a sustainable future—ecology, economy, and social equity.⁴ Often described as “the three Es” the concept is also identified as the “three Ps” Planet, People, Prosperity, or, using the term popularized by William McDonough and Michael Braungart, the “triple bottom line.”⁵ Whichever specific shorthand is used, the joining of environmental outcomes with economic decisions allows us to recognize the crucial role architects play in brokering material and financial choices. Similarly the regrettable results of social inequity, whereby the world’s wealthiest inhabitants consume a hugely disproportionate percentage of the world’s resources, leave the globe’s poorest citizens scrambling to meet daily needs in ecologically degraded and degrading circumstances.

Reinforcing this triumvirate—the green braid that infuses sustainable architectural design—has several other advantages, as well. Architects too often resist engagement with economic aspects of our projects, believing the field is too mercurial or too banal to engage. However, without the abstract leveler of economics our work can be perceived as naively extravagant or, worse, injurious to planetary health in the short and long term. Emphasizing

⁴ Brundtland, Our Common Future, 37–38.

⁵ William McDonough and Michael Braungart, Cradle to Cradle: Remaking the Way We Make Things (New York: North Point Press, 2002). See Chapter 5.
the role of social equity in creating a sustainable planet calls into play the many architects whose work has sought to level the playing field, particularly in heavily populated urban areas. Some of these architects, typically working without specific reference to environmental consequences, have been contributing inadvertently to long-term sustainability by enhancing living conditions, advocating for economic advantages, reinforcing relatively dense yet humane living patterns and honoring cultural sustainability which often holds keys to ecological sustainability. Finally, coemphasizing ecology, economy, and equity allows the architects who have, for more than a generation, worked hard to maximize energy efficiency and to modulate solar gain to share their efforts with colleagues whose goals are shared but who lack these well-developed, highly technical environmental means. In short, the use of the green braid metaphor, requiring three intertwined threads be woven into each sustainable project, allows us to reframe our own discipline’s exclusionary categorizing logic as a network of relations.

CLASSIFICATORY LOGIC AND THE PROBLEM OF PERSPECTIVE

Prominent discourses within the academy, especially the sciences, have come to rely on the persuasiveness of classificatory logic. This logic has allowed us to understand a specific idea or thing as a piece of a larger whole, and it has allowed scientists to pursue a rigorous and exhaustive mapping of all the world’s knowledge. This ambitious project was prefigured by the work of Raymond Lull and other proto-scientists in the early Renaissance who laid out a tiered, prioritized model of the world’s knowledge in the form of “memory theaters.”6 Once the system was established by the great scientific philosophers of the seventeenth century, new knowledge could be fit neatly within existing categories, while the categories themselves, many worked out in the eighteenth and nineteenth centuries through the development of progressively more specific disciplines, remained fixed. But an important component of the memory theater was lost in the process, and with it the ability for knowledge to relate across categories. Memory theaters were originally imagined as combinatory systems, allowing new relations to be considered through the fresh juxtapositions of ideas or things.

A parallel or, some would say resultant, development to the hegemony of classificatory knowledge is the intellectual objectification of those things studied.7 In order to fully understand an idea or a thing, the argument goes, one must avoid feeling a sense of relation to it. Fairness and thorough scrutiny require that the scientist exhibit objectivity, not empathy, toward the thing being studied. In the current language of cultural studies, Western knowledge requires the acting subject (the scientist or “self”) separate him or herself from the object of investigation (the thing or “other”). Over centuries, the perceived scientific necessity to separate self from other, subject from object, has been generalized to a societal disconnect severing the individual from a larger network of relations.

Ironically, as members of human society reinforce such separation in many ways through daily action, scientists have changed course. In the early twentieth century, physicist Werner Heisenberg unveiled his uncertainty principle which stated that an elementary particle can be observed as either a particle or a wave, depending on the role of the observer. The concept that the observer is inextricably linked with the phenomenon observed is now well established among physicists, but other branches of science, other academic disciplines, and most of the human community have not yet adjusted their/our conception of the world to privilege relation over objectification.

The implications of this change of perspective are profound. While many writers, including some cited in this book, advocate for a knowledge of relations or networks, among the earliest modern authors to capture the spirit of the transformation now in progress was philosopher Martin Buber. In his famous 1923 book-poem he described the change from “I–it” thinking to “I–thou” thinking, which suggested a reverence for those things so often considered object, thing, or other. He wrote,

When Thou is spoken, the speaker has no thing for his object. For where there is a thing there is another thing. Every It is bounded by others; It exists only through being bounded by others. But when Thou is spoken, there is no thing. Thou has no bounds. When Thou is spoken, the speaker has no thing; he has indeed nothing. But he takes his stand in relation.8

Underlying all the essays in this book is the conceptual foundation Buber described so beautifully. The authors, through their scholarly research and design proposals, demonstrate and indirectly advocate for I–thou relationships between our planet and all its citizens.

THINKING SYSTEMS

Over the past century, several disciplines have recognized the limitations of the metaphorical tree of knowledge on which smaller and smaller branches hold increasingly rarefied and disconnected facts. This metaphor for classification fails to recognize the impact that apparently disconnected phenomena have on one another. Brief examples from several disciplines, each of which has historically contributed to architecture’s disciplinary foundation, will serve as examples.

Albert Einstein famously complained “God doesn’t play dice” when confronted with theoretical anomalies that suggested the universe is constructed of interconnected probabilities rather than causal chains. While physicists over the past eighty years have worked to develop theories that incorporate the element of uncertainty, identified by Heisenberg, into what Prigogine describes as a new extended rationality, architects have generally felt more comfortable with the world as described by Einstein, if not Newton and Descartes.9, 10 Newtonian concepts of objectivity and temporality and

Cartesian spatial logics, and the mindsets they incorporate, still prevail within the discipline of architecture.

Meanwhile physicists have come to identify self-organizing non-linear systems and nonequilibrium processes that operate probabilistically. They imagine a world of multiple, fluctuating fields evolving asynchronously at the microscopic scale of dynamic systems and the macroscopic levels of biological and human activities. Heisenberg said, “The world thus appears as a complicated tissue of events, in which connections of different kinds alternate or overlap or combine and thereby determine the texture of the whole.” While Peter Eisenman’s explorations of scale symmetry and chaos theory resulted in a series of compelling formal studies, quantum physicists are interested in participating in the convergence of different sciences that describe life. Prigogine says, “We are observing the birth of a science that is no longer limited to idealized and simplified situations but reflects the complexity of the real world, a science that views us and our creativity as part of a fundamental trend present at all levels of nature.”

Critical theory, too, seeks to understand the world without overly simplifying it. Critical theory is a term used in the humanities to capture the intellectual skepticism leveled at the privileged position given certain philosophical and literary texts in the twentieth century. Scholars who employ methods to critique, deconstruct or otherwise challenge existing intellectual hierarchies often argue that knowledge cannot be fixed in perpetual relations of power and prestige. Rather, it migrates through multiple channels of communication within and between texts, affecting and infecting other literary works. The phenomena of migrating knowledge and argumentation, typically occurring without regard for authorized and approved routes of acceptance, was described by Roland Barthes in his 1971 essay “From Work to Text” in which he says,

The intertextual in which every text is held, it itself being the text-between of another text, is not to be confused with some origin of the text: to try to find the ‘sources’, the ‘influences’ of a work, is to fall in with the myth of filiation; the citations which go to make up a text are anonymous, untraceable, and yet already read: they are quotations without inverted commas.

Gilles Deleuze and Félix Guattari, in their often cited book *A Thousand Plateaus*, articulate the concept of the rhizome in contrast to the tree, the latter described as part of an arborescent system.

Arborescent systems are hierarchical systems with centers of significance and subjectification, central automata like organized memories. In corresponding models, an element only receives information from a higher unit, and only receives a subjective affection along preestablished paths . . .
Accepting the primacy of hierarchical structures amounts to giving arborescent structures privileged status. In a hierarchical system, an individual has only one active neighbor, his or her hierarchical superior. The channels of transmission are preestablished; the arborescent system preexists the individual, who is integrated into it at an allotted place.17

Instead, Deleuze and Guattari advocate for the rhizome, saying, “The rhizome is an a-centered, nonhierarchical, non-signifying system without a General and without an organizing memory or central automaton, defined solely by the circulation of states.”18

The metaphor of the rhizome allows these and other critical theorists to summarize their project, to loosen systems of classification and hierarchy within what is often known as the Western literary canon.

“Ecology” is the term Ernst Haeckel coined in 1866 by fusing the Greek words for household (oikos) and study (logos) to describe the study of nature’s household. In the past century the concept has grown into a field of study, based in the natural and eventually the social sciences. Ecology explicitly looks at the relationships between natural systems, studying the impacts of change in one system on another system. A key feature is the concept of an ecosystem, comprised of elements of many diverse kinds of plant and animal life brought together by physical proximity. Such an ecosystem depends equally on contributions from all types of diversity, from earthworms to large mammals, from molds to trees. Ecology helps us understand that bigger is not better, nor is harder, nor more complex better. Ideas of hierarchy, often put forward by human beings as projections of our own characteristics in an attempt to rationalize the goal of planetary dominance, are inconsistent with evidence found by ecologists. McDonough and Braungart provide an example of the necessary relation between simple and complex, small and large and high and low creatures when they describe a forest ecosystem:

Each inhabitant of an ecosystem is therefore interdependent to some extent with the others. Every creature is involved in maintaining the entire system; all of them work in creative and ultimately effective ways for the success of the whole. The leaf-cutter ants, for example, recycle the nutrients, taking them to deeper soil layers so that plants, worms, and microorganisms can process them, all in the course of gathering and storing food for themselves. Ants everywhere loosen and aerate the soil around plant roots, helping to make it permeable to water. Trees transpire and purify water, make oxygen, and cool the planet’s surface. Each species’ industry has not only individual and local implications but global ones as well.19

Another key principle of networked knowing we learn from ecologists relates to complex causality. In ecosystems change does not happen in a linear fashion. Unlike laboratory experiments, where one factor can be evaluated

17 Gilles Deleuze and Félix Guattari, A Thousand Plateaus: Capitalism and Schizophrenia (Minneapolis, Minn.: University of Minnesota Press, 1987), 16.
18 Ibid., 21.
19 McDonough and Braungart, Cradle to Cradle, 122.
in isolation, in an ecosystem a change in one factor, seemingly innocuous, can have disproportionate impacts on other elements of an ecosystem, or on the health of the ecosystem itself. Nonlinear change, the value of diversity, nonhierarchical organization recognizing the equal importance of many elements of a system and the very concept of considering species in the context of complex systems—all these are concepts brought forward by practitioners of ecology.

The three disciplines briefly recognized for their roles in developing concepts such as the network, rhizome, and system, share several common threads. First, they all espouse nonmechanistic, post Cartesian thinking. They focus on the whole rather than just the parts. They are contextual. Second, they believe ideas and matter to be nonhierarchical. The object of study is always nested within larger and smaller systems. Indeed the concept of object or point is reimagined as an episode within a larger trajectory, pattern or “line of flight.” All parts of the system are recognized to be equally important. They specifically conceptualize networks operating within networks. Finally, they understand that systemic behavior is influenced by feedback loops which reinforce effective trial and error behavior and quickly communicate misdirection. In this way they recognize that early experiments influence outcomes and that methodical, thorough research, because it is less opportunistic, may not provide adequate timely feedback in systems that recognize many variables.

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS
The preceding section briefly summarized several disciplines of historical significance to architectural thinking, and fundamental changes initiated within each discipline in the twentieth century. While the work of physicists, philosophers, and ecologists described above is widely accepted within each respective discipline, architects have not yet internalized the repercussions of a changed worldview into our own broader disciplinary thinking. For example, we refer to building systems (structure and various mechanical infrastructures) using the term popularized by ecologists, but we do not typically conceive of these building systems as interrelated. We embrace critical theory as a component of architectural theory, but habitually respond in what Deleuze and Guattari would describe as an arborescent fashion—subliminally promoting hierarchies and centers, in the form of centers of influence (New York, Los Angeles, London), spheres of influence (certain old and well-established universities), and personalities of influence whose work is disproportionately published in journals and promoted by word of mouth. We often cite the value of twentieth-century discoveries in physics on the work of the Cubists and certain early modern architects, but as a discipline we understand little of contemporary math and physics. Instead we refer back to the work of Plato, Descartes, and pre-Einsteinian physics to find touchstones for spatial order and the linear causality implied in program narratives.

20 Deleuze and Guattari, A Thousand Plateaus, 9.
In short, we have not internalized the networked worldview developed in these disciplines into our own fundamental knowledge base.

As Thomas Kuhn wrote in *The Structure of Scientific Revolutions*, such a transformation rarely occurs automatically. Kuhn argues that disciplinary communities typically hold tight to the status quo and only relinquish control of shared knowledge bases when community members depart or when significant external forces emerge. It is worth reviewing in some detail Kuhn’s analysis of the process through which scientific knowledge changes in the academy.

Kuhn first identifies the concept of the disciplinary community. This consists of the producers and validators (through the peer-review process) of scientific knowledge. In many scientific disciplines this is a specialized group numbering in the hundreds. These knowledge producers and validators share what Kuhn describes as a disciplinary matrix, with several common features. First, the disciplinary matrix captures shared symbolic generalizations, “expressions, deployed without question or dissent by group members, which provide points at which group members could attach the powerful techniques of logical and mathematical manipulations in their problem solving enterprise.”

Second, the disciplinary matrix holds beliefs in particular models that supply the group with preferred or permissible analogies and metaphors. By doing so these models help to determine what the validators will accept as an explanation and puzzle solution. Conversely, these beliefs assist the producers and validators to determine a roster of unsolved puzzles and to evaluate the importance of each in completing the discipline’s picture. The disciplinary matrix thus serves to limit the scope of further investigations. Finally, the disciplinary matrix establishes values which provide the producers and validators with a sense of community. These values are especially important “when the members of a particular community must identify crisis or, later, choose between incompatible ways of practicing their discipline.”

Kuhn then describes the characteristics of a scientific crisis. In general, a discipline in crisis finds too many features of reality that cannot be explained using the prevailing model. Some degree of disarray results, as alternative explanations are offered and tested. Typically, those most invested in the existing paradigm are most resistant to efforts to replace it. As a result, among producers and validators the youngest and those otherwise marginalized are less invested in supporting the prevailing paradigm and more likely to pursue alternative models. When an alternative scientific model replaces an existing model, it is known as a paradigm shift.

What precipitates such a paradigm shift? First, it is important to note that it is not always evident such a shift is occurring. Kuhn’s research involved the analysis of contemporaneous scientific literature now recognized as central to historic changes. He found that such changes sometimes occurred over the course of decades, generations, or even centuries. Given that such shifts
may not be obvious as they occur, Kuhn suggests several precipitating factors. First, within an academic community, defenders of the old paradigm might simply retire, thus losing interest in defending the models that have made their careers. Or, evaluators might be convinced by a compelling new explanation to a vexing problem, satisfying newly identified criteria. Similarly evaluators might recognize a “neater,” “more suitable,” or “simpler” theory to explain a known phenomenon, replacing the older theory. Finally, a new model might appeal to an individual’s sense of the appropriate or the aesthetic.

MAPPING KUHN’S ARGUMENT ONTO THE DISCIPLINE OF ARCHITECTURE

What are the ramifications of Kuhn’s argument for architecture’s disciplinary community? Do we see evidence that architects have begun to acknowledge the value of sustainable thinking applied to our professional discourse? Are these values being applied in a systemic, networked fashion?

First, as Kuhn describes, the people who promote an outdated paradigm leave the university and therefore no longer guard their intellectual positions. The paradigm they promote essentially fades. Currently the professors who came of age at the height of the Cold War and during a time of apparently plentiful resources are retiring in record numbers across all disciplines within the university. In many universities during this time, the demands of the military industrial complex drove the research agenda.

In addition, we are now at the beginning of the end of a generation of architects who have strategically and assertively promoted theory and work through self-publication for almost half a century.26 While this essay does not intend to denigrate the valuable service of communicating disciplinary knowledge performed by these author/designers, it is worthwhile to note that the entire process occurred at the margins of the academic system and without a formal peer-review process. This semi-private enterprise stands in contrast to most disciplines that operate within the context of the academy.

The retirement of baby boomers who were educated to trust technology, taught using curricular models that disperse and categorize knowledge rather than integrate it, and valued objectivity over empathy leaves a substantial gap in our disciplinary matrix. This gap is perhaps amplified by the relative lack of widely disseminated, peer-validated knowledge. Taken together, this seems a classic description of a fading paradigm.

Second, Kuhn suggests that an irreconcilable paradox between evidence and beliefs emerges within a discipline. As each day’s news reports, evidence of environmental change on a planetary scale is mounting. The planet is demonstrating that our behaviors are unsustainable. Because architects participate in many of the decisions that are causing exponential planetary damage, it would seem that we have no choice but to reconsider what we build and what and how we teach, along with how we live. This powerful external

26 Such self publication, in the most positive sense of the term, would include Five Architects, featuring the work of the so-called New York Five (Peter Eisenman, Michael Graves, Charles Gwathmey, John Heiduk, and Richard Meier) by Arthur Drexler; Complexity and Contradiction in Architecture, by Robert Venturi; Oppositions, published from 1973 to 1984; Assemblage, published from 1986 to 2000; Deconstruction in Architecture, published by the Museum of Modern Art, co-curated and co-authored by Philip Johnson and Mark Wigley in 1987 and ANY (Architecture New York), published from 1993 to 2000. Indeed Philip Johnson’s first effort to serve as a disciplinary validator was the very persuasive The International Style, published and co-curated by Johnson and Henry Russell Hitchcock in 1932.
trigger, combined with a generational changing of the guard, suggest that we have arrived at a fertile moment in the reconstruction of architecture's disciplinary matrix.

EXISTING AND EMERGING DISCIPLINARY STRUCTURES

It is necessary to briefly inventory our discipline's structures—the community-wide cultural forms that hold our discipline's knowledge. These structures, no less than the knowledge they contain, reflect certain values and unacknowledged habits of behavior.

The academy, the colleges and universities that teach architecture throughout North America, operate in two primary modes: teaching and research. The first is the delivery of education. Through the development of curriculum and the teaching of individual courses, faculty members distribute known information and ways of thinking to students. The world of academic architecture is neatly divided into “studios” and “support courses,” each taught for prescribed numbers of credit hours and contact hours, typically in a sequence leading toward an increasingly complex understanding of the design and construction of a building. The subject matter is gathered into categories reminiscent of Beaux Arts curricula developed a century or more ago. These categories have been further homogenized over the past half-century, in part due to the increasing influence of national accrediting standards. Scale dependent subsets of what was historically known as architecture, such as landscape architecture, urban design, interior design, are often taught as separate disciplines.

Emerging trends in schools of architecture call into question the disciplinary segregation that has developed in recent decades. For example, community design programs, an outgrowth of the social activism of the 1960s, have found new life by providing visions for rapidly growing communities as a counterpoint to the private developers who often times promote their own large-scale planning initiatives. Community design often bridges architecture, landscape architecture and urban planning and design. Design-build programs, created in response to students’ desire to see their designs realized, their anxieties about the building process, and their ambitions to help the larger world attain better living standards, are flowering within many schools of architecture. These programs confound institutional structures such as the semester system and stretch legal and professional roles within the academy. They also invert the traditional hierarchy of head over hands, by requiring physical and mechanical intelligence along with design skill and academic knowledge. Finally, many programs are finding that disciplinary categories developed in the past century are cumbersome and institutionally expensive. Thus a number of special programs, such as historic preservation or sustainability are found to span scale-based disciplines while other programs, such as architecture and landscape architecture, merge. The specialists hired to teach particular courses are finding themselves placed in new

combinations to pursue integrated multidisciplinary design issues of interest to students and the public.

Research is the generic term for the second mode in which the academy operates. Produced through peer-assessed writing, theoretical and built design projects and funded investigations, research allows faculty members to develop and disseminate new knowledge to other members of the architectural profession and to the public. Here, too, architects are increasingly working as part of collaborative teams on projects that cross disciplinary boundaries. Today architects design and write about landscapes while landscape architects design structures. Subject matter crosses more than just disciplines within environmental design, as professors of architecture work with environmental engineers, political scientists, cultural theorists or health care practitioners. While such interdisciplinary work is not new, it is again newly popular.

Within the architectural profession, traditions that have been stable for half a century are being questioned by a new generation of practitioners. Entrepreneurial practices are supplementing the client-initiated professional model. While many architects still wait for clients to contact them, court clients with the help of public-relations professionals, or respond to invitations to submit credentials, others are increasingly becoming developers, contractors, website designers or manufacturers. With the help of digital technology, architectural design can be practiced by partners working across the country, or by firms working around the clock and around the globe. A new generation of architects is designing everything from furniture to towns. Perhaps the most extreme case of scale swing is the work of graphic designer Bruce Mau, whose firm’s designs range in scale from books to countries.29

And, as suggested by the work of Mau, designers not trained as architects and individuals trained as architects but not acting in a professional capacity or with the advantage of licensure, are increasingly participating in the design of the built environment.

The turbulence described above—in changing academic subdisciplines, in the rearrangement of professional relationships and strategies for advancement, and in the incursion of non-licensed professionals into the heart of architectural practice—all suggest opportunities for a reformulated disciplinary matrix. How does the ethic and knowledge known as sustainability work in this changing context?

Currently, some schools of architecture and some established offices see sustainability as a set of technical parameters to be applied to design projects, like paint to an already built wall. We believe a far more substantial realignment, described above as a paradigm shift, is necessary. This will require that the discipline of architecture, in its academic and professional roles, move beyond a focus on ecology and energy conservation, important though they are. Instead, we should recognize that sustainability is being taught by more than just one or two faculty members per school and valued by more than

one or two practitioners with a technical bent in each office. The values and expertise of these academics and professionals is typically disconnected from a shared vision of sustainability. This broad vision is one we hope to frame through the essays within this volume.

TWO COMMON THEMES

While the proponents of sustainability currently teaching, learning and practicing come from diverse specializations—from environmental technology to architectural theory to construction methods to design—they share several common traits.

First, they understand and cultivate relationships between the “parts” such as teaching areas, disciplines, or the boxes within their institutions’ organizational charts. They are comfortable with fuzzy boundaries. They establish flexible relations between self/other. They have empathy with others and therefore are committed to social justice. They have respect for our planet’s ecosystems and recognize that we cannot “beat” the natural world.

Second, they engage in time-based thinking. Rather than viewing architecture as an unchanging object they conceive of architecture as the physical part of a fabric intended to change over the course of a twenty-four hour day, through changes in season, and across human history and the over the course of the lifespan of planet.

FROM RE-SEARCH TO FEED-BACK

The paradigm of networked knowing, which has emerged in physics, ecology, and literary theory, among many other disciplines, prioritizes lateral linkages over vertical chains of command. Such linkages allow nonhierarchical networks-within-networks to flourish by complimenting deficits with strengths. Like an ecosystem, this paradigm relies on redundancy. Its organization is organic and flexible, responding to challenges quickly.

A critical feature of flexible and quick response to systemic challenges is the concept of feedback. Here, too, architecture can adapt from disciplines such as physics, literary theory, and ecology and incorporate immediate learning into our production of knowledge. Currently, the results of architectural production sometimes remain unknown or underappreciated by architectural producers. Most pertinent to our subject are examples of built design projects that are not sustainable, particularly using the criteria of ecology, economy, and equity. Our discipline’s evaluative methods tend to value the persuasiveness of form, and even of heroic personalities, at the expense of important feedback regarding weathering, community acceptance, budgetary limitations, and numerous other less imageable issues.

While too many designers ignore feedback that conflicts with imageable fascinations as described above, others await research that is too slow in coming or is viewed as proprietary—that is owned knowledge rather than shared knowledge. Particularly in recent decades architects have avoided
consideration of diminishing natural resources, planetary change, and social inequities because of the appearance of abundance, particularly in the United States. At the same time, the feedback to architects traditionally provided by craftsmen and draftsmen has been significantly reduced by changed construction practices, outsourcing, and other aspects of globalization.

This book hopes to join the growing chorus of architectural echoes, returning good information back to the producers of architectural knowledge, whether in built, drawn, or written form. The diversity of authors, designers, and projects included reflects the vast network of academics working within the field now known as sustainability. Through variety and overlap, it seeks to build redundancy into a disciplinary system too often conceived as univocal. It seeks to reinforce an astylistic cross section of our discipline doing excellent and ethical architecture. It seeks to capture Heisenberg’s “complicated tissue of events, in which connections of different kinds alternate or overlap or combine and thereby determine the texture of the whole.” 30

30 See Note 12.
References

ARCHITECTURE, ECOLOGICAL DESIGN, AND HUMAN ECOLOGY

Daly, H. Beyond Growth, Boston, Mass.: Beacon Press, 1996.

Donahue, B. Reclaiming the Commons, New Haven, Conn.: Yale University Press, 1999.

MODELS, LISTS, AND THE EVOLUTION OF SUSTAINABLE ARCHITECTURE

META-DISCOURSES
IN PEDAGOGY
AND PRACTICE
SCUPPER HOUSES, OR THE DOGTROT HOUSE AND
THE SHOTGUN HOUSE RECONSIDERED

Jordan, Terry G., Texas Log Buildings: A Folk Architecture,
Austin, Tex.: University of Texas Press, 1978.

Scofield, Edna “The Evolution and Development of the
Tennessee Houses,” Journal of the Tennessee Academy of
Science, 11(1936).

Holl, Steven Rural and Urban House Types in North America,

Originally published in the Proceedings of the 86th Annual
Meeting of the Association of

POETIC ENGINEERING AND INVENTION Arthur Troutner, architect, and the development of engineered lumber

Holbrook, Dana “Framing Techniques Change to Match Resource Quality,” Architectural Record (September 1995).

Johnson, Peter Raising the Roof: Creating the Kibbie Dome at the University of Idaho, Moscow, Idaho: University of Idaho Press, 1998.

ACKNOWLEDGEMENTS

My research methodology for this work has consisted of interviews with the participants, review of historical documents, and study of other research and publications. My work has been supported by the Graham
Foundation for
Advanced Study in the Fine Arts, the University of Idaho
Research Council,
the Idaho Humanities Council, and the Idaho Heritage Trust.
Thanks to the
Association of Collegiate Schools of Architecture, the
Architectural Research
Centers Consortium, and the American Institute of
Architects, I have had the
opportunity to present my research at various academic
conferences and
meetings. I have also benefited greatly from the comments
of those who
have reviewed this work. They have included the notable
scholars Edward
Allen, Edward Ford, Max Underwood, Julia Robinson, Jeffrey
Cook, Sandra
Stannard, and others. I am very grateful for their advice
and encouragement.

Originally published in the Proceedings of the 84th Annual
Meeting of the Association of
Collegiate Schools of Architecture, 1996.
ECONOMY = ECOLOGY A scenario for Chicago's Lake Calumet

City of Chicago Department of Planning and Development Calumet Area Land Use Plan, Chicago, Ill., 2001.

ARCHITECTURAL INVENTION AND THE POSTCOLONIAL ERA The Tjibaou Cultural Center in New Caledonia by the Renzo Piano Building Workshop

