ROLLER COMPACTED CONCRETE DAMS
Roller Compacted Concrete Dams

Edited by

L. Berga & J.M. Buil
Spanish National Committee on Large Dams, SPANCOLD

C. Jofré
Spanish Institute of Cement and its Applications, IECA

S. Chonggang
Chinese National Committee on Large Dams, CHINCOLD

Volume 1
Table of Contents

Preface XV
Organization XVII

Volume 1

Lectures
RCC dams in Spain – present and future
M. Alonso-Franco & C. Jofré (Spain) 3
RCC dams in China
Ch. Shen (China) 5
30 year’s history of Roller-compacted Concrete dams in Japan
I. Nagayama & S. Jikan (Japan) 27
The state-of-the-art of RCC dams in 2003 – an update of ICOLD Bulletin no. 125
M.R.H. Dunstan (United Kingdom) 39
Some recent innovative methods and techniques in the design and construction of RCC dams
B.A. Forbes (Australia) 49
Materials and RCC quality requirements
F.R. Andriolo (Brazil) 61
RCC use in dam rehabilitation projects
K.D. Hansen (USA) 79
Performance of Roller Compacted Concrete (RCC) dams – an honest assessment
E.K. Schrader (USA) 91
Spanish experiences during impoundment
A. Soriano (Spain) 103

Theme 1: Advantages of RCC dams – the use of RCC in dam rehabilitation
Cindere dam – 107 m high Roller Compacted Hardfill Dam (RCHD) in Turkey
S. Batmaz (Turkey) 121
Successful large RCC dams – what are the common features?
T.P. Dolen, R. Ibáñez-de-Aldecoa, J.L. Eharz, M.R.H. Dunstan (USA, Spain, United Kingdom) 127
The value engineering study of Marun regulating dam in Iran
K. Emami, D.R. Arab, A. Mardashti, A. Saarang, H. Shirazi, F. Izadjoo, T. Izadpanaah & H. Basirzadeh (Iran) 139
El Atance dam (Spain): an example of an “RCC-friendly” design and construction
S. Madrigal, R. Ibáñez-de-Aldecoa & A. Gómez (Spain) 147
The advantages of use RCC for Dona Francisca project
J.M.P. Mussi, D.E. Moser & R.D. Steffen (Brazil) 155
Value-Engineering at Olivenhain Dam, USA
M. Pauletto & M.R.H. Dunstan (USA, United Kingdom)

Alternative solutions for the Ibiur Dam – conventional concrete vs. RCC
I. Pildain (Spain)

Saluda Dam mix design program
P.C. Rizzo, E.K. Schrader, L.R. Gaekel & J.P. Osterle (USA)

Reconstruction of the Villarpando Dam in the Dominican Republic using Roller Compacted Concrete
F. Sáenz de Ormijana, A. Capote & V. Mohedano (Spain)

Presa Rompepicos – a 109 meters high RCC dam at Corral Des Palmas with final design during construction
E.K. Schrader & J.A. Balli (USA, Mexico)

Theme 2: Experiences and technologies in different countries

Comparison between the execution technologies of Porce II and Beni Haroun dams
F. Abadía & A. Palacio (Spain)

RCC construction – acceptable means and methods
R.P. Bass (USA)

Research and application of key technologies for Roller Compacted Concrete cofferdam in Three Gorges Project
G.J. Cao, Y. Wang & C.J. Zhu (China)

RCC dams design and construction in Morocco – specific aspects
A.F. Chraibi (Morocco)

Lean RCC dams – Laboratory testing methods and Quality Control Procedures during construction
D.G. Camoulos, T.P. Koryalos

Adaptive construction methodology for the Ghatghar Saddle dam, India’s first RCC dam
M.R.H. Dunstan & Ch. Hicks (United Kingdom, USA)

Three RCC dams for Ghatghar project – an Indian experience
V.V. Gaikwad & V.C. Shelke (India)

Trial mix programme for Jahgin Dam – the first major RCC dam in Iran
A.G. Ghafuri, M.E. Omran & M.R.H. Dunstan (Iran, United Kingdom)

New trends of construction methodology and its influence in the research for Brazilian Roller Compacted Concrete (RCC)
N.G. Graça, E.L. Batista, A.C. Albuquerque, M.A.S. Andrade, R.M. Bittencourt & W.P. Andrade (Brazil)

Brazilian experience of Roller Compacted Concrete (RCC)
N.G. Graça, E.L. Batista, R.M. Bittencourt & W.P. Andrade (Brazil)

Modifying construction methods of Zirdan RCC dam
M.R. Hajialikhani (Iran)

Determination of setting times on RCC by means of ultrasonic energy (experience with six projects)
G. Hermida, M. Bollati & J.L. Rivas (Colombia, Spain)

Toker dam, a contractor’s perspective on constructing RCC projects in developing countries
C. Hicks, J. Yoon & W. Mesghinna (USA, Korea, Eritrea)

Characteristic of dam-concrete applied to concrete dams constructed by the Water Resources Development Public Corporation (WARDEC) – mix design and quality control
K. Hino, T. Jotatsu & T. Hara (Japan)
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread and application of RCC damming technology in China</td>
<td>301</td>
</tr>
<tr>
<td>L. Liu & Y. Zhang (China)</td>
<td></td>
</tr>
<tr>
<td>Experience gained during design and construction of the Jahgin RCC cofferdam</td>
<td>307</td>
</tr>
<tr>
<td>M.E. Omran, M.J. Olapour, R. Peyrovdin & F. Ortega (Iran, Germany)</td>
<td></td>
</tr>
<tr>
<td>Pedrógão dam: first RCC experience in Portugal</td>
<td>319</td>
</tr>
<tr>
<td>F. Ortega, C. Bastos & P. Alves (Germany, Portugal)</td>
<td></td>
</tr>
<tr>
<td>Trial mix programme and full-scale trials for Olivenhain RCC dam, USA</td>
<td>329</td>
</tr>
<tr>
<td>M. Pailetto, M.R.H. Dunstan & F. Ortega (USA, United Kingdom, Germany)</td>
<td></td>
</tr>
<tr>
<td>Development of Roller Compacted Concrete dam in Thailand</td>
<td>339</td>
</tr>
<tr>
<td>W. Pongtepuopathum (Thailand)</td>
<td></td>
</tr>
<tr>
<td>Miel I: RCC dam, Height World Record</td>
<td>345</td>
</tr>
<tr>
<td>H. Santana & E. Castell (Colombia)</td>
<td></td>
</tr>
<tr>
<td>Design and mix studies with high and low cementitious content RCC for Nordlinga alda dam in Iceland</td>
<td>355</td>
</tr>
<tr>
<td>E. Schrader, U. Kristjansdottir, J. Skulason & S. Sveinbjornsson (USA, Iceland)</td>
<td></td>
</tr>
<tr>
<td>The development of RCC arch dams</td>
<td>363</td>
</tr>
<tr>
<td>Q.H.W. Shaw (South Africa)</td>
<td></td>
</tr>
<tr>
<td>Roller Compacted Concrete arch dam of Northwest Cold Area in China – Longshou arch dam</td>
<td>373</td>
</tr>
<tr>
<td>Y. Su (China)</td>
<td></td>
</tr>
<tr>
<td>The dam of Beni Haroun – Algeria</td>
<td>379</td>
</tr>
<tr>
<td>B. Tuomi, Z. Guemmadi & H. Houari (Algeria)</td>
<td></td>
</tr>
<tr>
<td>Overview for construction of Roller Compacted Concrete (RCC) dam, Gezhoura Construction Group Corporation (CGGC)</td>
<td>385</td>
</tr>
<tr>
<td>H. Zhou (China)</td>
<td></td>
</tr>
<tr>
<td>Experience in compacted concrete dam projects in the Ebro catchment area (Rialb, Val and Urdalur dams)</td>
<td>393</td>
</tr>
<tr>
<td>M. Zueco, F. Hijós, M.A. Bermúdez, A. Fruns & O. García (Spain)</td>
<td></td>
</tr>
</tbody>
</table>

Theme 3: Technological innovations in RCC dams

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed fibre optic temperature measurements in RCC dams in Jordan and China</td>
<td>401</td>
</tr>
<tr>
<td>M. Aufleger, M. Conrad, Th. Strobl, A.I.H. Malkawi & Y. Duan (Germany, Jordan)</td>
<td></td>
</tr>
<tr>
<td>Temperature control and design of joints for RCC arch dams</td>
<td>409</td>
</tr>
<tr>
<td>Z. Bofang (China)</td>
<td></td>
</tr>
<tr>
<td>Contraemblaise de Monción: a hardfill dam constructed in the Dominican Republic</td>
<td>417</td>
</tr>
<tr>
<td>A. Capote del Villar, F. Sáenz de Ormijana & Y. Mohedano (Spain)</td>
<td></td>
</tr>
<tr>
<td>Repeated joint-grouting of Roller Compacted Concrete arch dam</td>
<td>421</td>
</tr>
<tr>
<td>G. Chen, G. Ji & G. Huang (China)</td>
<td></td>
</tr>
<tr>
<td>New design method of RCC high arch dam</td>
<td>427</td>
</tr>
<tr>
<td>Q. Chen (China)</td>
<td></td>
</tr>
<tr>
<td>Design and prototype test of stepped overflow surface at Dachaoshan hydropower station in China</td>
<td>431</td>
</tr>
<tr>
<td>Y. Deng, K. Lin & L. Han (China)</td>
<td></td>
</tr>
<tr>
<td>The use of pulverized aggregates for concrete production</td>
<td>433</td>
</tr>
<tr>
<td>N.G. Graça, E.L. Batista, R.M. Bittencourt & W.F. Andrade (Brazil)</td>
<td></td>
</tr>
<tr>
<td>Structural design of Cindere Dam</td>
<td>439</td>
</tr>
<tr>
<td>A.F. Gürdil & S. Batmaz (Turkey)</td>
<td></td>
</tr>
</tbody>
</table>

VII
CSG method using muck excavated from the dam foundation
H. Hanada, K. Ooyabu, T. Tamezawa & S. Matsueda (Japan) 447

Design concept of trapezoid-shaped CSG dam
T. Hirose, T. Fujisawa, H. Kawasaki, M. Kondo, D. Hirayama & T. Sasaki (Japan) 457

Concept of CSG and its material properties

Design guidelines for Roller Compacted Concrete lift joints
R.A. Kline (USA) 475

Seismic stability and stress–strain state of a new type of FSH-RCC dams
Y.P. Liapichev (Russia) 485

Additives in RCC – research and a real case
D.E. Moser, R.D. Steffen & F.R. Andriolo (Brazil) 493

The construction of temporary structures by CSG method in Tokuyama dam project
M. Oie, Y. Yamaguchi, K. Fujita & S. Jikan (Japan) 499

Dynamic properties of CSG
S. Omae, N. Sato & I. Oomoto (Japan) 511

Synthetic geomembranes in RCC dams: since 1984, a reliable cost effective way to stop leakage
A.M. Scuero & G.L. Vaschetti (Switzerland) 519

The innovation of construction in the III-stage of RCC cofferdam of the Three Gorges Project
D. Wang, Z. Dai & B. Sha (China) 531

Suofengying powerstation micro-expansion Roller Compacted Concrete dam
Z. Zheng (China) 537

The design and application of the alternate climbing formwork to the III-stage RCC cofferdam of
the Three Gorges Project
Y. Zou, X. Liu & Z. Dai (China) 541

Volume 2

Preface XV
Organization XVII

Theme 4: Planning and design

Thermal analysis of Roller Compacted Concrete
E. Aquino, S. Botassi, M.A.S. Andrade, M.R. Bittencurt, W.P. Andrade & F.R. Andriolo (Brazil) 547

Feasibility study of stepped spillways in RCC dams controlled by a Tainter gate
A. Amador, M. Sánchez-Juny, J. Pomares, J. Dolz, F. Abadía & R. Ibáñez-de-aldecoa (Spain) 555

Special design requirements for high RCC gravity dam
W. Baile, Z. Jianping & Ch. Guanfu (China) 561

Numerical modelling of thermal stress in RCC dams using 2-D finite element method – case study
J.L. Calmon, J. Murcia, S. Botassi dos Santos, E. Gambale & C.J. da Silva (Brazil, Spain) 569

A modified 1-D strip model for thermo-mechanical analysis of RCC dams
M. Cervera & M. Goltz (Spain, Germany) 579
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralco dam, Chile – features of its design and construction</td>
<td>589</td>
</tr>
<tr>
<td>D. Croquevielle, L. Uribe, R. Mutis & B.A. Forbes (Chile, Australia)</td>
<td></td>
</tr>
<tr>
<td>The design of Longtan Roller Compacted Concrete gravity dam</td>
<td>597</td>
</tr>
<tr>
<td>S. Feng & F. Xiao (China)</td>
<td></td>
</tr>
<tr>
<td>Thermal stress simulation and possible crack analysis of Mianhuatan RCC dam</td>
<td>603</td>
</tr>
<tr>
<td>Z. Guoxin, Z. Bofang & G. Ningxiu (China)</td>
<td></td>
</tr>
<tr>
<td>Study of the thermal compensation method for high RCC dam using concrete with MgO</td>
<td>611</td>
</tr>
<tr>
<td>P. Hu, P. Yang & S. Huang (China)</td>
<td></td>
</tr>
<tr>
<td>The software package for the thermal control of concrete dams and its engineering applications</td>
<td>615</td>
</tr>
<tr>
<td>S. Huang, P. Hu & P. Yang (China)</td>
<td></td>
</tr>
<tr>
<td>Constitutive modelling of Roller Compacted Concrete</td>
<td>619</td>
</tr>
<tr>
<td>F. Kalantary & P. Sadeghi (Iran)</td>
<td></td>
</tr>
<tr>
<td>Thermo-mechanical analysis of Roller Compacted Concrete dams</td>
<td>625</td>
</tr>
<tr>
<td>D.A.V. Krüger, E.E. Kavamura, N.F. Carvalho, M.B. Hecke, R.D. Machado & L.A. Lacerda (Brazil)</td>
<td></td>
</tr>
<tr>
<td>Miel I dam – design of the geotechnical and structural instrumentation program for the world’s highest RCC dam</td>
<td>633</td>
</tr>
<tr>
<td>P.M. Leguízamo (Colombia)</td>
<td></td>
</tr>
<tr>
<td>Design of Zhouning RCC gravity dam</td>
<td>641</td>
</tr>
<tr>
<td>L. Lin (China)</td>
<td></td>
</tr>
<tr>
<td>A direct tensile strength for Roller Compacted Concrete (RCC) gravity dams</td>
<td>645</td>
</tr>
<tr>
<td>A.I.H. Malkawi & S. Mutasher (Jordan)</td>
<td></td>
</tr>
<tr>
<td>Stability analysis of RCC gravity dam blocks on Sloped Banks in Mianhuatan hydropower station</td>
<td>651</td>
</tr>
<tr>
<td>Y.Q. Mao (China)</td>
<td></td>
</tr>
<tr>
<td>Experimentally obtaining dimensionless abacus for the design of stepped spillways in up to 50 m high dams</td>
<td>655</td>
</tr>
<tr>
<td>A. Martinez & J.A. Baztán de Granda (Spain)</td>
<td></td>
</tr>
<tr>
<td>Design features for Porce III RCC dam</td>
<td>661</td>
</tr>
<tr>
<td>A. Marulanda & A. Castro (Colombia)</td>
<td></td>
</tr>
<tr>
<td>Investigation of influence of placement schedule on the thermal stresses of RCC dams, using finite element analysis</td>
<td>669</td>
</tr>
<tr>
<td>J. Noorzaei, H.R. Ghafouri & R. Amini (Malaysia, Iran)</td>
<td></td>
</tr>
<tr>
<td>An approach to the actual value of the modulus of deformation in concrete dams</td>
<td>675</td>
</tr>
<tr>
<td>G. Ormazabal, A. Aguado & L. Agulló (Spain)</td>
<td></td>
</tr>
<tr>
<td>Research on prototype observation and feedback analysis of RCC gravity dams</td>
<td>683</td>
</tr>
<tr>
<td>X. Ren, L. Liu, Z. Zhang & Y. Mao (China)</td>
<td></td>
</tr>
<tr>
<td>DMR, a new geomechanics classification for use in dams foundations, adapted from RMR</td>
<td>689</td>
</tr>
<tr>
<td>M. Romana (Spain)</td>
<td></td>
</tr>
<tr>
<td>Characterization of the pressure field over a stepped spillway in Roller Compacted Concrete dams</td>
<td>697</td>
</tr>
<tr>
<td>M. Sánchez-Juny & J. Dolz (Spain)</td>
<td></td>
</tr>
<tr>
<td>Energy loss on stepped spillways</td>
<td>701</td>
</tr>
<tr>
<td>G. Valentín, P.V. Volkart & H.E. Minor (Switzerland)</td>
<td></td>
</tr>
<tr>
<td>Introduction of the design of the Three Gorges Project RCC cofferdams</td>
<td>707</td>
</tr>
<tr>
<td>Y. Weng, J. Li & Y. Wang (China)</td>
<td></td>
</tr>
</tbody>
</table>
Theme 5: Materials

Porosity studies for Roller Compacted Concrete

Research on the optimization of RCC-paste system incorporating high-volume flyash
G. Chen, G. Ji, F. Jiang, L. Pan & R. Jiang (China) 723

Investigations on the modulus of elasticity of young RCC
M. Conrad, M. Aufleger & A.I.H. Malkawi (Germany, Jordan) 729

Use of wet coal ashes (type F) in RCC dams
F. Delorme, P. Gaudron & R. Valon (France) 735

RCC design for Dachaoshan hydropower station in China
Y. Deng & K. Lin (China) 743

Effects on Roller Compacted Concrete of Isfahan slag
A. Fakher & P. Azizi-Moghaddam (Iran) 747

Influence of mineral and pozzolanic admixtures on Roller Compacted Concrete
L.A. Farias, N.P. Hasparyk, A.S. Lituário, M.A.S. Andrade, R.M. Bittencourt & W.P. Andrade (Brazil) 753

Effect of air entrainment on the workability and strength of Roller Compacted Concrete for dam construction
R. Gagné, E. Houehanou, R. Lupien, A. Prézeau & F. Robitaille (Canada) 763

Optimization of the compaction time with the effects of different pozzolans (type and dosage) on the mechanical properties of RCC
M. Gharavy (Iran) 769

Using PT instead of flyash in the Dachaoshan RCC gravity dam
S. Guo (China) 777

Laboratory previous tests for Sa Stria dam (Italy) performed using three different mineral admixtures
R. Ibáñez-de-Aldecoa & L. Gutiérrez (Spain) 781

RCC mix and thermal behaviour of Miel I dam – design stage
J. López, G. Castro & E. Schrader (Colombia, USA) 789

Reaction between certain Jordanian rock-aggregate and cement in Roller Compacted Concrete (RCC) dams
A.I.H. Malkawi, S. Rabab’ah & A. Abed (Jordan) 799

A comparative study of mechanical properties of RCC trial mix using two different cementitious materials (fly ash and natural pozzolan)
A.I.H. Malkawi, H. Shaia, S. Mutasher & M. Aridah (Jordan) 809

Horizontal construction joints parameters
J. Marques Filho, W.P. Andrade, M.A. Traboulsi, V.A. Paulon & D.C. Dalmolin (Brazil) 817

RCC properties characterization in laboratory test fills
J. Marques Filho, W.P. Andrade, M.A. Traboulsi, V.A. Paulon & D.C. Dalmolin (Brazil) 823

Discussions regarding the use of materials and the design of RCC dams
F. Ortega & F.R. Andriolo (Germany, Brazil) 829

Mix design of Roller Compacted Concrete for Ghatghar pumped storage scheme in India
V.N. Pendse, R.L. Damani, S.L. Kshirsagar & C.L. Narkhede (India) 839

X
Characterisation of fresh concrete in order to evaluate the joints between layers
A.B. Ribeiro & A. Carrajola (Portugal) 849

Experimental study on mechanical characteristics of super lean-mix concrete
T. Sasaki, I. Nagayama, T. Kobori & Y. Yamaguchi (Japan) 853

Mix design and properties of RCC at Mujib dam – high and low cementitious content
E. Schrader, J. López & M.F. Aridah (USA, Jordan) 859

Studies on the quality of Roller Compacted Concrete with low cement content on Ueno dam
T. Tsukada (Japan) 865

Experience in materials used in compacted concrete dams in the Ebro catchment area
(Rialb, Val and Urdalur dams)
M. Zueco, F. Hijós, M.A. Bermúdez, A. Fruns & O. García (Spain) 877

Theme 6: Construction and quality control – equipment and programming

DMA – a simple device for measuring unit water in RCC mixtures
M.A.S. Andrade, M.A. Pimenta, R.M. Bittencourt, A.C. Fonseca, J.T.F. Fontoura & W.P. Andrade (Brazil) 883

Full-scale trials for RCC
M.A.S. Andrade, M.A. Traboulsi, R.M. Bittencourt & W.P. Andrade (Brazil) 891

Review of some points in the RCC practice for dam construction
F.R. Andriolo (Brazil) 897

Construction methods for the first large RCC dam in Iran
A.M. Azari, R. Peyrovodin & F. Ortega (Iran, Germany) 905

Coring testing program at the Olivenhain dam
B.C. Bennett & J.L. Stiady (USA) 913

Controlling RCC mix workability for Olivenhain dam construction
B.C. Bennett, J.L. Stiady & M.P. Rugh (USA) 923

Quality inspection of the RCC dam at Dachaoshan hydropower station
Y. Deng & K. Lin (China) 933

Benefits of the full-scale trial performed for Beni Haroun dam (Algeria)
M.R.H. Dunstan & R. Ibáñez-de-Alecoa (United Kingdom, Spain) 935

Quality control in RCC dams using the direct tensile test on jointed cores
M.R.H. Dunstan & R. Ibáñez-de-Alecoa (United Kingdom, Spain) 943

Physical and mechanical properties of Roller Compacted Concrete in Capanda dam
basing on core samples testing
V.E. Fedosov, E.A. Kogan, M.T. de Almeida, F. Fontoura Jose Tomaz & A.F. Fontoura Paulo
(Russia, Angola, Brazil) 951

RCC quality control applied in the structures of 1st and 2nd construction stages of the HPP Tucurui
H.R. Gama, O.M. Bandeira & S.S. Lacerda (Brazil) 959

RCC Esparragal small dam construction (Sevilla-Spain)
M.E. Grosso & E. Benitez (Spain) 969

Evaluation of construction quality control and material properties of RCC dam
Z. Guan (China) 979

RCC quality control for Mujib dam
J. López, M. Aridah & E. Schrader (Jordan, USA) 983

Ensuring quality control when building RCC dams
A. Marulanda, A. Castro, F.A. Sánchez (Colombia) 995
Challenges in Ralco dam construction
G. Moreno (Chile) 1005

Quality control RCC of Dona Francisca dam
D.E. Moser, R.D. Steffen, C. Britto & J.M.P. Mussi (Brazil) 1013

Development of a direct tensile strength test procedure for Roller Compacted Concrete characterization
J.L. Olivares, J.F. Navarro & V. Ausín (Spain) 1021

Construction of Beni Haroun dam (Algeria)
M. Sanz (Spain) 1029

Appropriate laboratory compaction methods for different types of Roller Compacted Concrete (RCC)
E. Schrader (USA) 1037

Extensive shear testing for Saluda dam Roller Compacted Concrete
E.K. Schrader & P.C. Rizzo (USA) 1045

Developing database and reporting system softwares for quality control testing
J.L. Stiady & B.C. Bennett (USA) 1057

Dona Francisca Hydroelectric power plant – design and construction of the RCC structures
J.A. Sobrino, A.M. Fernandes, S. de Pauli Basso & R.F. Pereira (Brazil) 1067

Rationalized construction of embedded structures in dam bodies constructed by the RCD method
T. Uesaka, T. Arai, Y. Takada & T. Sasaki (Japan) 1073

Study on properties of RCC for Cofferdam III of the Three Gorges Project
W. Yingchun, L. Jiazheng, X. Hanjiang, Y. Huanquan & C. Yimin (China) 1085

Safety monitoring design and implementation of RCC cofferdam on the right bank of
Three Gorges Project
D. Zhenlong, X. Hanjiang, L. Xiangsheng & Z. Qi (China) 1089

Experience in construction methods as adopted in compacted concrete dams in the
Ebro catchment area (Rialb, Val and Urdalur dams)
M. Zueco, F. Hijós, M.A. Bermúdez, A. Fruns & O. García (Spain) 1095

Theme 7: Performance of RCC dams – experiences on operation

Construction of Urdalur dam and project to repair the seepage through the drainage system
G. Abad (Spain) 1101

Rolled Compacted Concrete dams: current construction methods, output and permeabilities
J.C. De Cea Azáñedo & E. Benítez Pascual (Spain) 1109

Long-term performance of Roller Compacted Concrete at Upper Stillwater dam, Utah, USA
T.P. Dolen (USA) 1117

El Atance dam: microcement injections and sealing wells drilled in full contraction joints
L. García García, S. Madrigal Sanchez & G. Abad Muñoz (Spain) 1127

Waterproofing of Cenza dam
A. Gil (Spain) 1133

Thermal measurement and analysis of large Roller Compacted Concrete dam
H. Koga, H. Katahira & H. Kawano (Japan) 1139

Design, construction and operation of Cenza dam (Spain)
J. Martín, J.F. Sánchez, A. Gil, F. Ortega & M.G. Mañueco (Spain) 1149
Miel I dam, seepage control and behavior during impoundment 1161
A. Marulanda, A. Castro & J. Silva (Colombia)

Behaviour analysis of RCD dam body 1169
M. Nonaka, C. Yamamoto, I. Oomoto & S. Jikan (Japan)

Three years of physicochemical seepage water analysis from Jordão River Dispersion 1179
RCC first Brazilian dam: diagnose
K.F. Portella, O. Baron, M.A. Soares, M.M. Elias & A.C. Borges (Brazil)

Seepage and treatment of cracks in Salto Caxias dam 1185
M.A. Soares, P. Levis, R.W. Seara, E.S. Ferreira & J.F. Terres (Brazil)

Capanda – RCC dam – 12 years quality control data 1193
M.A. Tavares, M.A. Origa, J.T.F. Fontoura, E.R. Holanda, W.A. Pacelli & F.R. Andriolo (Brazil)

The first built Roller Compacted Concrete arch dam – Puding Dam 1205
Z. Yang & J. Yang (China)

Experience in compacted concrete dam loading in the Ebro catchment area 1211
(Rialb, Val and Urdalur dams)
M. Zueco, F. Hijós, M.A. Bermúdez, A. Fruns & O. García (Spain)

Author index 1219
Preface

To satisfy the demands for water, which is essential for life and human development, it has been necessary, since more than 5,000 years, the construction of more than 48,000 large dams. These large dams and reservoirs, regulate some 3,500 Km³ per year, a 28% of the available water resources. All the socioeconomic indicators show that in the future, in the next 25 years, it will be necessary an increase of the water regulated by the reservoirs up to a minimum of 35%, which would require increasing the storage capacity of the dams and reservoirs by some 2,000 Km³, about 30% of the actual reservoir storage capacity.

The water regulated by dams and reservoirs produces irreplaceable benefits in the irrigation, water supply, hydropower, flood mitigation, navigation, recreation, tourism, etc. So, the irrigation reaches 17% of the world's arable land, and produces 40% of the total of the world crop. The reservoirs regulate the water around 40% of the irrigated lands, which signifies about 15% of the total of food production. The hydropower signifies the 20% of the total generation of electricity, and 20% of the dams have as one of their purposes the mitigation of the important damages and impacts produced by the floods.

The dam engineering has always paid a very special attention to the issues relative to the safety, economy and speed in the construction of dams. Through the years the dam tipology has gone evolving toward shapes where they use better the resistant qualities of the concrete, like in the arch dams, and also the dam technology has used a more effective setting in work of the materials of the embankment dams.

In the decade of the 80's the first experiences of dams of Roller Compacted Concrete (RCC) dams, began, combining the properties of durability and resistance of the concrete, with its setting in work by means of similar equipment to that used in the embankment dams. From then there has been a wide expansion of the method of the RCC dams throughout the world. At the end of the year 2002 there were in the world 251 RCC large dams in operation, and 34 under construction. The countries with a greater number of RCC dams are: China with 45 dams, Japan 42, USA 36, Brazil 29, and Spain 21 RCC dams.

The RCC dams have the important advantages of being more economical and to be able to be built quickly, with which the objectives of the regulation and production are obtained sooner. In this way it is possible to achieve an adequate balance among economy, safety and environmental respect. In the last years the size of the RCC has been increased in a very significant way, and at the present time some of the largest and highest dams in the world are now being constructed of RCC. In July 2001 the highest RCC gravity dam in the world, Longtan dam in China, with a height of 216.5 m, started to be constructed; its volume of concrete will be 6.8 million m³, with more than 4.5 million m³ of the RCC.

In and of itself the SPANISH NATIONAL COMMITTEE ON LARGE DAMS (SPANCOLD) and the CHINESE NATIONAL COMMITTEE ON LARGE DAMS (CHINCOLD), they have believed opportune and necessary to celebrate the IV INTERNATIONAL SYMPOSIUM ON ROLLER COMPACTED CONCRETE (RCC) DAMS, to give to know the state of the art of the RCC dams and the development of their concepts and technologies, as well as the innovative methods and techniques in design and construction. This IV International Symposium follow those held in Beijing (China) in 1991, Santander (Spain) in 1995, and Chengdu (China) in 1999. For this event China and Spain, two pioneer and leader countries in RCC dams, have joined their efforts to prepare a meeting with the biggest ambitions, both in contents and in international scope.

This book is the Proceedings of the IV International Symposium on Roller Compacted Concrete (RCC) dams, celebrated in Madrid (Spain) from the 17th to the 19th of November, 2003. In it are published the 145 papers presented, which come from 30 countries, and also the nine lectures imparted by world eminent experts in RCC dams. All this constitutes a complete description and analysis of the current state of the art in the field of RCC dams, as well as of the diverse technologies used in different countries that at the present time are building and designing RCC dams. The innovative methods and techniques in design and construction of RCC dams are also presented, among those that highlight, the grout enriched RCC (GE-RCC), the sloped layer method (SLM) in the placing of the RCC, and the negative pressure chute to transport the mixes.

The works have been divided in the following six topics:

2. Experiences and technologies in different countries.
3. Technological innovations on RCC dams.
4. Planning and design.
5. Materials.

Finally we would like to express our acknowledgements to the organizations and companies, which has collaborated in the organization of this International Symposium, among those it is necessary to highlight the Ministry of the Environment of Spain. Without their support it would not have been possible the celebration of this event. Our most important appreciation to the authors of the lectures and papers published here. They are those who have made possible to gather in this book the fundamental and most current topics relative to RCC dams, and the criteria, new trends and innovations which are necessary to develop in the future in order to advance in the improvement of the applications of the RCC dams, to reduce its costs and times of construction, as well as the implantation of these dams with more safety and inside the framework of the sustainable development.

L. Berga
J.M. Buil
C. Jofré
Shen Chonggang
Organizing Committee

Chairmen
Luis Berga. *Chairman of SPANCOLD (Spain)*
Juan Carlos López Agüí. *General Director of IECA (Spain)*
Lu Youmei. *Chairman of CHINCOLD (China)*

Members
Fernando Abadía. *SEOPAN (Spain)*
Manuel Alonso Franco. *SPANCOLD (Spain)*
Juan Manuel Buil. *SPANCOLD (Spain)*
Cao Guangjing. *Yangtze Three Gorges Project Development Corporation (China)*
César Cañedo. *College of Civil Engineers (Spain)*
José María Gaztañaga. *SPANCOLD (Spain)*
Jia Jinsheng. *China Institute of Water Resources and Hydropower Research (China)*
Carlos Jofré. *IECA (Spain)*
José María Marcos. *UNESA (Spain)*
Shen Chonggang. *CHINCOLD (China)*
José Ignacio Temes. *SEOPAN (Spain)*
Xiao Feng. *Mid-south Design and Research Institute for Hydroelectric Projects (China)*
Jesús Yagüe. *Ministry of the Environment (Spain)*
Zhou Hougui. *China Gezhouba Water and Power Group (China)*

Secretariat
IECA (Spain)
Scientific Committee

Members
Francisco R. Andriolo (Brazil)
Juan Manuel Buil (Spain)
Chen Gaixin (China)
Deng Yiguo (China)
Malcom Dunstan (United Kingdom)
Arturo Gil (Spain)
Brian Forbes (Australia)
Guan Zhicheng (China)
Kenneth Hansen (USA)
Francisco Hijós (Spain)
Rafael Ibáñez (Spain)
Shigeharu Jikan (Japan)
Liu Liuyan (China)
Gabriela Mañueco (Spain)
Alberto Marulanda (Colombia)
Isao Nagayama (Japan)
Francisco Ortega (Spain)
Ernest K. Schrader (USA)
Antonio Soriano (Spain)
Weng Yonghong (China)
Zhou Jianping (China)

With the collaboration of:
MINISTRY OF THE ENVIRONMENT (MMA), SPAIN
INTERNATIONAL COMMISSION ON LARGE DAMS (ICOLD)
INTERNATIONAL COMMISSION ON IRRIGATION AND DRAINAGE (ICID)
INTERNATIONAL HYDROPOWER ASSOCIATION (IHA)
ELECTRICAL UNION (UNESA), SPAIN
SPANISH ASSOCIATION OF PUBLIC WORKS COMPANIES (SEOPAN)
COLLEGE OF CIVIL ENGINEERS, SPAIN
CIVIL ENGINEERS ASSOCIATION, SPAIN
THE INTERNATIONAL JOURNAL ON HYDROPOWER AND DAMS
CHINA YANGTZE THREE GORGES PROJECT DEVELOPMENT CORPORATION
CHINESE SOCIETY FOR HYDROELECTRIC ENGINEERING
CHINESE HYDRAULIC ENGINEERING SOCIETY
CHINA INSTITUTE OF WATER RESOURCES AND HYDROPOWER RESEARCH
CHINA GEZHOUBA WATER AND POWER GROUP CO. LTD.
BEIJING HYDROPOWER AND WATER RESOURCES INSTITUTE, CHINA
LATIN AMERICAN CEMENT FEDERATION (FICEM)
THE EUROPEAN CEMENT ASSOCIATION (CEMBUREAU)
SPANISH CEMENT ASSOCIATION (OFICEMEN)
ACS
CORSAN-CORVIAM
DRAGADOS Y CONSTRUCCIONES
Lectures
RCC dams in Spain – present and future

M. Alonso-Franco
SPANCOLD – Spanish National Committee on Large Dams, Madrid, Spain

C. Jofré
IECA – Instituto Español del Cemento y sus Aplicaciones, Madrid, Spain

ABSTRACT: This paper briefly reviews the essential characteristics of the Spanish dams in RCC, both in their typology and their design and construction, as factors relative to materials, mixtures and mixing.

The Spanish RCC dams have had a satisfactory behaviour, similar to the numerous dams of conventional concrete existing in Spain. It is believed that the use of concrete with a high content of paste has had a great influence in this performance.

1 INTRODUCTION

The peculiar location of Spain, to the South West of Europe and to the North of Africa causes that climatology of Spain has some very specific and varied characteristics, which produce rainfall patterns and river flows with a very high irregularity and an unevenly geographical distribution of the water resources.

The flow regime of the rivers presents a high irregularity, with pronounced interannual variations which can give rise to long periods of drought, and also very important seasonal variations with low water levels during the summer months. In and of itself, the available water resources in to natural regime are very scarce, with a total of 9,200 hm³/year (8.3% of the renewable resources), what would take place, to mean per-capita availabilities of only 240 m³/year, as compared with the 1,000 m³/year considered basic on a world level in order to cover the supply needs.

These basic data of the water resources in Spain, together with the specific circumstances of water supply, are clear indicators of the Spanish situation, in which in order to be able to attend the water demands it has been necessary to construct many large dams and reservoirs. The construction of dams in Spain began in Roman times, of which still remain in operation the marvellous Proserpina and Cornalvo dams. At the present time there are 1,200 large dams in Spain, and 25 under construction, with a total reservoir capacity of 56,500 hm³ which have made possible to pass from a natural regulation of only 8% of the renewable water resources, to a real availability of more than 40%, which has situated the country in the setting of the mean natural regulation of the European countries. With this number of large dams Spain occupies the first place among the European countries, and the fourth in the world ranking. Dams in Spain produce important economic and social benefits and have been a determining factor in the development reached during the last decades.

The greater part of the Spanish dams are made of concrete (72%), due to the fact that in general the good quality of the foundations, and that in Spain the rivers could present extreme floods, in face of which concrete dams are less vulnerable. For all this, when in the decade of the 1980’s the technique of dam construction of roller compacted concrete (RCC) was developed and there was in the country a great activity in dam construction, in Spain this new technology was rapidly implanted, and so in the year 1984 the first RCC dam was completed (Erizana dam).

At the present time there are 24 RCC dams in operation, 21 being large dams, with a height superior to 15 meters (see Table I at the end). These dams have been constructed in locations of diverse climates, and their objectives cover all de purposes: Water supply (10), Flood control (9), Irrigation (3) and Hydropower (2) (see Figure 1). Spain occupies the first place among the European countries with relationship to the number of RCC dams, and the fifth place in the world ranking.

The advantages that have supposed the RCC dams refer mainly to the economy in the costs and to a bigger speed in the construction. Also the RCC dams suppose a bigger hydrological safety, issue that has a special importance in Spain.
The main characteristics of the Spain RCC dams, which are described more in detail in the several tables of the paper, are the following:

- Height: Average 42.38 ± 25.82 m, with a maximum of 101 m (Rialb dam).

- Volume of concrete: Total 4,218,600 m³, with an average of 175,800 m³ per dam, and a maximum of 1,325,000 m³ in Rialb dam.

- Volume of RCC: Total 3,608,300 m³ with an average of 150,350 m³ per dam, and a maximum of 1,200,000 in Rialb dam.

- Percentage of RCC over the total of the concrete: 86%.

In this paper the principal characteristics of the RCC dams in Spain are described, analysing their typology, the material employed and the mixtures, the waterproofing, the upstream faces, the joints and their treatment, the lift joints, the stepped spillways, and the construction methods usually employed (mixing, transport, placing and curing of the concrete). Finally some features of the Spanish RCC are presented.

2 TYPOLOGY

All the dams constructed up to the present time are of a straight gravity type (PG), except one of curved plan, with a standard section (which adjusts to the Pigeau profile) with slight adaptations in order to favour the new technology of continuous placing of the concrete; at times the triangular profile comes close to being trapezoidal.

It is obvious to point out that both the quality and the geotechnical characteristics of the foundation affect the width of the structure (Puebla de Cazalla and Rialb Dams). The seismicity of the Iberian Peninsula has generally very little influence on this.

The experience in construction of RCC dams has shown that the design of a dam should simplify the structure, eliminating all that is superfluous, that is to say, which is not detrimental to its safety and its functional character. So:

- The conduits of intakes, outlets and diversions are usually concentrated in one same section or block. Their valves and operating mechanisms are situated next to the downstream face and their inlets, if it is possible, in a tower backing on to the upstream face.

- The inspection and drainage galleries should be reduced in number to the essential minimum. In the case that only one gallery is utilized, it will be attempted to ensure that it be “perimetric” as it permits the carrying out of corrective ground works, waterproofing and drainage, in a more rational manner and with greater efficiency. These peri-metric galleries have been carried out in various ways: embedded in a trench in the ground, encased in the
conventional concrete of the foundation or formed with prefabricated elements. In the Puebla de Cazalla Dam the perimetric gallery was formed with corrugated metal tubing, with very successful results.

It has to be pointed that it has not always been possible to make a simplified design for which, in some cases, a part of the inherent constructive advantages of the RCC has been lost.

In addition, it should be mentioned that in the new rockfill Tous Dam, RCC was extensively used to protect the outlets.

Figure 1 shows the location of all the twenty-six RCC dams and in Figure 2 some standard sections which can be considered to be the most representative are shown. The Tables I to IV (see end of document) describe the geometric and constructive data and the materials employed in the twenty-four RCC Spanish Dams in operation.

3 MATERIALS FOR THE RCC

3.1 Aggregates

In Spain, the aggregates used in the RCC dams have been practically of identical character to those employed in conventional concrete. Of crushed stone
or of natural deposits, of calcareous or siliceous origin, are employed without distinction, depending on their cost.

The aggregates are classified in coarse aggregates (>5 mm) and fine aggregates or sands (<5 mm). The first ones are separated, in general, in three fractions and the second into one or two fractions, depending on their maximum size.

The maximum size of aggregate (M.S.A.) has been of 80 mm, only being greater in Erizana and Sta. Eugenia dams where it was 100 mm. When the upstream face has been constructed with RCC, the aggregate of 80 mm has been reduced to 40 mm or 50 mm in this zone.

In the Spanish RCC the advantages of using aggregates of a greater size (greater resistance, lesser shrinkage, lesser quantity of water and paste), have been subordinated to the interest of avoiding segregation.

When the aggregates have been of quality, the fines of the sands have formed part of the paste. If they are of a calcareous nature, these fines (<80 μm) can reach a 12% of the total of the sand. In the Urdalur Dam it was of 8%.

In Table IV (see end of document) the quantities of aggregates utilized in the concrete of different dams are indicated.

3.2 Cementsitious content and additives

The binding material used in Spain for the compacted concretes is generally a mixture of Portland cement and flyash, class F type silica-aluminous, with a content of the latter very superior to that of the cement. Other additions such as blast-furnace slag have been used only in Urdalur dam and in the auxiliary compacted concrete of the New Tous Dam. In these cases the cementsitious material has been a composite cement supplied by the cement factory.

To date, it has been preferred, due to its greater flexibility, to make the mixture on the work site. The characteristics of the flyash are regulated by the UNE-83-415-87 Standard.

In general the beginning of RCC dams construction, admixtures were not used for RCC. In the Puebla de Cazalla Dam setting retarders was successfully used. Setting retarders and water reducers are of a more general use at the present time.

4 MIXTURES

In the RCC the mixtures are the object of special studies. It is not only valid to comply with the specifications of the design documents, which generally are limited to requiring some compressive and tensile strength. Several technologies are available in order to determine the mix design of the concrete. All these methods are grouped together by those which are based on the concrete technology and those others which depend on soil technology. Those of the first group are based on the “consistency” of the material, which is measured and determined by the “Vebe Consistometer”. The second group uses the Modified Proctor test.

In Spain, the concrete technology has been generally employed. That is to say, it starts from a grading of the coarse aggregate with a minimum of voids which are filled with a mortar, in this turn the voids of the sand being filled with an excess of paste.

In essence it consists in designing a paste of cement, active additions, fines and water, the volume of which exceeds the volume of voids of the frame formed by the total aggregate.

The combined grading of the aggregates is continuous and the consistency of the concrete is measured with the Vebe Modified consistometer. Up to the present time all the RCC dams in Spain have been constructed with mixtures with a high content of paste, it is to say, with a cementsitious material dosage superior to 150 kg/m³, and in most cases, to 200 kg/m³, with a high substitution of cement by flyash (proportions) flyash/cement from 60/40 to 70/30 are normal). Cementsitious material contents of 240 kg/m³ have been reached in some cases.

It is convenient that the content in paste exceeds that is necessary to fill the voids; the excess flows back to the surface and contributes to improving the union between successive lifts.

In Table IV the characteristics of the concretes are shown (see end of document).

5 IMPERMEABILITY

The impermeability of the Spanish dams of RCC has been entrusted to the body of the dam and sometimes to its upstream zone. A conventional concrete strip of a minimum width of 1.5 m sufficient to place and
absorb the “water-stop” bands, has been the element in which the impermeability of our first dams has been entrusted. In later constructions, the whole section has been carried out using RCC, although of two types, RCC 1 and RCC 2. The first is placed on the upstream face in a strip of a minimum width of 3 m but increasing with the head of water. This concrete, of greater quality, has a smaller M.S.A. in order to reduce or avoid segregation; this measure is accompanied by a paste slightly richer in cementitious material.

Presently the technique is orientated to the use of only one RCC type in the body of the dam, using all possible measures in order to minimize the problem of the segregation. This is possible by the use of a concrete rich in paste. This procedure presents some advantages: rapidity of construction, reduced cost and no technical problem of the union of the different concretes.

In the Spanish dams no other elements have been incorporated, close to the upstream face, in order to improve the impermeability, as it has been done in many other dams (synthetic sheets, prefabricated panels, etc.). If this has been possible, it is due to the use of RCC with high quantity of paste in the Spanish dams.

If in the dams of Puebla de Cazalla and Cenza a strip of bedding mortar, 80 cm wide, was placed between layers, its main purpose being to improve the aspect of the faces.

6 JOINTS

6.1 Vertical contraction joints

Their placing is mainly based on thermal considerations. The importance of a thermal study is obvious in order to determine their distance and the convenience of cooling the concrete.

The RCC dams are divided in blocks by way of joints which are materialized by means of conventional formworks or with inductors.

6.1.1 Joints with formwork

In the beginning all the joints were of this type and they were 40 to 60 m apart. These blocks permitted the placing of the formwork of the face in one of them, whilst the other was being concreted. Its inconvenience was the passage of the machines from one block to another, overcoming the difference of height of the formwork, which has been solved in many diverse ways. When the concrete of the upstream face was vibrated, initiated joints were left every 15 or 10 m. (See Figure 3).

6.1.2 Driven joints

Later, the blocks were made longer, or they were concreted in a continuous manner from side to side, this
depending on the size of the installations (production) and on the maximum temperatures.

In both cases the blocks have to be divided in other intermediate blocks in order to avoid cracking due to the hydraulic and thermal shrinkage. This division of the blocks can be done by sawing the layer with a disc saw or otherwise by driving in a plate or sheet. The first procedure has only been carried out in the Maroño Dam. The second procedure has been used in all the remaining dams by way of an equipment which inserts by vibration a synthetic film or a galvanized sheet.

Whatever the type of transverse joint employed, it has to be made waterproof next to the upstream face. Normally it has been done with two bands of synthetic material (“water-stop”). Between them one or two conduits are left moulded in the joint, one of them connected to the inspection and drainage gallery. In the Atance Dam an exterior device has been installed the upstream face, which undoubtedly allows the placing of the RCC with greater speed and quality. Its efficiency has not been proved up to now due to the low water level in the reservoir.

In Table III (see end of document) data of the transverse and longitudinal joints of the blocks are given. In Figure 3 the details of the impermeabilization are shown.

In Sierra Brava Dam with formworked blocks 90 m long, a driven joint has been inserted in their center (final blocks 45 m long). In the Maroño and Cenza Dams, with continuous concreting, joints have been sawn every 40 m in the first, and plates have been driven by vibration every 20 m in the second. In the Val Dam joints have only been formworked every 60 m.

6.2 Horizontal joints between layers

These joints are the weak points and most controversial in the RCC dams, similarly to dams of conventional concrete. The difference is that in the first case, these joints are spaced 0.30 m (thickness of the layer) and in those of the second case they are spaced between 1.50 m to 2.50 m. The great number of the first demands greater attention.

The surface treatment of the layers is a point of discussion in our country, at the time of classifying a joint as “hot” (not needing treatment) or “cold” (needing treatment).

There exist several criteria in order to determine if a joint can be considered as cold or hot. One of them is the Maturity Factor (M.F.), defined as the product of the mean hourly temperature, measured on the surface of the layers in Centigrade degrees, by the time transpired in hours between the placing of two successive layers. At first this M.F. factor was fixed between 150–250°C \(\times \) h. In many cases these values make it necessary to divide the dam in blocks by way of formworked joints, due to the size of the installations.

These inconveniences and the experience accumulated have brought about that many engineers apply this criterion with flexibility. Every dam is a prototype and has an M.F. of its own variable in time according to the environmental conditions of temperature and relative humidity. It must be the experimental data, obtained on the test slab, that will provide an M.F. which is applied as a practical control of the constructive process.

\[
T(h) \times t (\degree C) = \text{M.F.}
\]

Depending on the cases this factor has varied in reality between values of the order of 80 and 300, which shows its lack of representivity. In Spain it has been used with maximum times between layers from 6 to 9 hours, although in Puebla de Cazalla Dam a time of 16 hours was reached, due to the use of a setting retarder.

These criteria appear more appropriate for low paste contents (<120–150 kg/m\(^3\) of cementitious material) and require to use mortars in the cases of cold joints (time between layers superior to that marked).

With richer contents (>200 Kg/m\(^3\)) it goes up to 24 hours (Upper Stillwater, New Victoria) and with the following treatment of joints, recommended by some experts:

1. Joint less than 24 hours: “Hot Joint”. It does not require any treatment, if the surface has not been damaged. Simply remove the water and the detritus by way of a vacuum equipped truck.
2. Joint between 24 and 48 hours (with favourable climate up to 72 hours): “Prepared joint”. It is sufficient to rake the surface with a steel wire brush and remove the detritus (vacuum equipped truck).
3. Joint more than 72 hours (with unfavourable climate 48 hours): “Cold joint”. Sandblasting and water at pressure. Same completion as the previous case.

In the hot joints no treatment is necessary, if we exclude their cleansing and maintaining the humidity of the surface, by aspersion of water.

The cold joints are treated similarly to that of the conventional concretes, applying a jet of air and water at pressure, cleaning with sweeper and suction and always placing a thin layer of mortar. The aspect of their surface should be identical to that of the conventional concrete dams. The cold joints programmed coincide with the upper face of the curbs (Burguillo and Sierra Brava dams, ...) or else with the edge of the formwork (dams of Maroño, Santa Eugenia, Canales, etc.). Some people discuss the necessity of bedding mortar, if the concrete is rich in paste.

In this important theme of the union between layers, one must be pragmatic, that is to say, the previously mentioned criteria should be considered as an orientation. It will be the daily practice which determines
the time of covering. Samples obtained by drilling during the work will provide useful information about the quality of the union.

7 CONSTRUCTION

7.1 Mixing, transport and placing

The mixing of the concrete has been usually carried out in tower-plants with several batch mixers, with a capacity such that makes possible its continuous placing although the mixing is not continuous. The only dams with continuous mixing have been those of Castilblanco and Rialb.

Conventional trucks with pneumatic tyres and high speed belt conveyors as well as their combinations, have been, in the Spanish dams, the only means of transport of the concrete from the mixing plant up to the point of placing. Belt conveyors up to the entrance to the works and interior distribution by trucks in Sierra Brava; all the transport by trucks in the dams of Los Canchales, Puebla de Cazalla, Santa Eugenia; high speed belts and trucks in the works in Maroño, Rialb, Val, Boquerón and Atance.

Every system has advantages and inconveniences. If the transport is carried out only using trucks, providing accesses at different levels, if the ground is very abrupt, is difficult and costly; in these cases the access should be made upstream in order not to affect the stability of the abutments nor causing damage to the landscape. The placing of the concrete with belt conveyors and spreaders is the procedure which least affects the quality of the mix already placed. In the high zones of the dam, the transport trucks are obliged to manoeuvre and make tight turns which can damage the recently placed concrete. The high speed conveyors, in spite of their cost, are very interesting for the dams of large dimensions, and also in the case of very steep slopes, with the inconvenience, with respect to trucks, that a breakdown of the belt paralyzes all the process of the job until it is repaired.

The transport of the concrete is an important decision which the constructor must take, as it affects to a great degree the quality and the cost of the work. It should be taken in function of the topography of the site, of the rhythms of production and of the existence or not of shuttered blocks.

Once the concrete mix is poured on site – either with belts or trucks – in small mounds it is immediately spread by bulldozer in longitudinal strips parallel to the axis of the dam. In very few occasions, a grader has been used. It is normal to advance the strip from the downstream face to the upstream face with a slight slope towards the latter.

The extension of the mixture close to the faces should be carried out carefully since they are the zones more susceptible to segregation, for which they require greater attention and the presence of workmen for manual corrections.

The compaction of the concrete is always carried out with self propelled smooth vibrating tandem rollers of 10 to 16 t. Other light units of some 3 t or pneumatic plates and tampers are used close to exterior faces and contacts with galleries and conduits. For a thickness of a normal layer (=30 cm) the number of passes of the roller is usually 6, back and forth, the first and last without vibration and the rest with vibration.

7.2 Faces-formworks

It is usual that the upstream face of a dam is smooth and that of downstream is stepped.

The first Spanish dams have been constructed using conventional travelling formwork, the design details of which depend on the number and type of the joints, on the rhythm of the construction and on the covering time. The height of the panel is a multiple of the thickness of the layer (2 to 2,40 m) and on its upper edge it will form a cold joint. This type of formwork is specially indicated when the dam is divided in shuttered blocks, as when one goes up the concrete is placed in the other. In the Cenza Dam a special formwork, travelling-hinged has been used, which allows greater speed of placing and, in this manner, the layer can be continuous from side to side avoiding the cold joint.

Concrete curbs have been employed in the dams of Burguillo and Sierra Brava. They were constructed with slip form equipment. In order that the formwork with curb results economical it is necessary that the dam will be long enough, that it be employed on both faces and that due to its shape it can be considered as a part of the resistant section of the dam. In the first projects this solution resulted attractive to the constructor, today their opinions do not always coincide.

If the downstream face is smooth, conventional formwork or slip formed curbs are employed. If it is stepped, as occurs in the majority of the Spanish dams, panels of the height of the step are employed; their fixing with anchorages and brackets is not easy, for which it is convenient that the height of the step is not small both for its fixing or as also its aesthetic outlook.

In the Spanish dams no other type of formwork has been employed other than the ones described.

Faces without formwork have been carried out in the Guadalemar Dam (isosceles section). In the Los Canchales Dam formwork has not been employed on the lower part of the downstream face since it was then covered by an earth fill.

7.3 Curing of the concrete

Immediately after its compaction and until the spreading of the following layers the surface of the layer has to be maintained humid.
This curing must be more carefully performed when the temperatures are high, avoiding the drying out. The treatment finishes on commencing the spreading of the following layers, simply cleaning the surface with a truck with vacuum equipment. It is important not to leave any puddles.

7.4 Contact surface of the ground with the RCC

The previous treatment of the foundation is equal to that for conventional concrete. All the small voids of the rock are filled with low consistency concrete internally vibrated. Before beginning the placing of the RCC a flat surface not less than \(30 \times 30\) m is necessary which is obtained with a levelling concrete, so that the machines for placing, spreading and compaction of the RCC can operate efficiently.

In very steep slopes (\(>0.5H, 1V\)) and on those slightly inclined as also in places not accessible to the compacting machine, a vibrated concrete is placed. This union must be carefully controlled. Always when possible in the dam section contacts should be avoided between conventional concrete and RCC, as described in the paper.

8 TEST SLABS

It appears obligatory that in every RCC dam, test slabs are carried out, and it has been done in the Spanish dams.

Before starting the placing of the concrete in the dam, a full size test slab should be constructed; on which the data obtained from the laboratory tests are corrected and optimized as well as those others that are imposed by the Technical Specifications of the Project. On the test slab the conditions for placing on the job the RCC will be tested: faces, thickness of layers, segregation, treatment of joints between layers and construction joints. It will serve at the same time for the personnel of the job to acquire experience. The dimensions of the slab have to be generous and not less than 10 layers in height and an approximate volume of RCC of 1,500 to 2,000 m\(^3\). In the dams of Canchales, Urdalur and Sierra Brava, among others, it has been preferred to make two test slabs, one during a previous phase and another once the plant had been installed. In order that its cost does not affect too much that of the job, the second slab can be integrated in some zone of the dam of lesser commitment.

In the previous laboratory tests study the gradation of the aggregates, the dosification of the cementitious materials, the consistencies, and Vebe times, for diverse mixtures of the RCC are studied.

From the test slab, cores will be obtained by drilling in order to measure densities, observe the unions between layers and the “in situ” permeabilities by filling the borehole with water.

9 MAIN CHARACTERISTIC OF THE SPANISH RCC DAMS

The main characteristics of the Spanish RCC dams can be summarized as follows:

1. All the dams are of straight gravity type, except one which is curved. Their standard section responds to the classic Pigeaud profile with adaptation to the technology of continuous placing.

2. In the design of the outlets and intakes, as also in that of the galleries, efforts have been made, at times insufficient, in order that the design is in agreement with the philosophy of a faster and economic construction.

3. The aggregates are of the same quality and similar granulometry as those utilized in conventional concrete. Their maximum size (M.S.A.) oscillates between 100 and 40 mm, the most normal being 80 mm.

4. Percentages in volume of the compacted concretes (RCC) with respect to the conventional concretes (CC) which the dams contain are very high. Values of \((\text{RCC})/(\text{RCC + CC})\) superior to 80% can be interpreted as a design of dam well orientated towards the new technology.

5. The cementitious materials are a mixture of Portland cement and flyash class F. The substitution of cement by the flyash reaches percentages of 70%. In two cases the cementitious material has been a composite cement available in the market.

6. The concretes of all the Spanish RCC dams are of “high paste content”, that is to say, the quantity of cementitious material is superior to 150 kg/m\(^3\). Their dosifications between 200 kg/m\(^3\) and 240 kg/m\(^3\) situate them among the dams with greater quantity of cementitious material.

7. All the dams have been divided in blocks by way of formworking the transverse joints. Exceptions are the dam of Guadalemar, which does not have joints, and Cenza, with a joint that only affects the uppermost 20 m.

8. The blocks of length superior to 60 m have been divided by way of driven joints in the majority of the cases.

9. The waterproofing of the vertical joints is obtained with two PVC water-stop bands, in the majority of the cases with a moulded conduit between them.

10. The Spanish dams of RCC do not incorporate in their interior any material that is not concrete or mortar. No material of the market is incorporated to reinforce the union between layers; no material (synthetic sheets or others) in order to increase the
impermeability in the upstream zone; no prefabricated material for the drainage of the dam (only boreholes with drill or moulded conduits in the vertical joints).

10 INVESTIGATION

Together with this large experience in the use of RCC dams, extensive research has been conducted on a number of particular topics of this technology. Some recent findings are summarized in the next paragraphs.

10.1 Stepped spillways

Tests have been performed on scale models to characterize the pressure field over a stepped spillway, providing information about the maximum and minimum pressures registered and the cavitation risk. For all the tested discharges a fully developed skimming flow regime occurs over the chute. The pressure along the symmetry centers of the horizontal faces shows a wavy pattern: some steps are in a peak and some others in a valley of that wavy behavior. Moreover, two different zones on the step have been identified: the outer edge, governed by impact with the upper jet, and the inner region controlled by the recirculating internal eddies.

There is not much information about the behavior of gated stepped spillways. For this reason some dams built in RCC are designed with a smooth spillway instead of a stepped one. To provide a better insight into this topic, the interaction of a Tainter gate controlling the flow over a stepped spillway has been analyzed with a scale model. Several scenarios have been tested: the discharge under a partially raised Tainter gate and two emergency situations characterized by the gate overtopping and a combination of flow over and under the gate. It was observed that to make compatible the flow through the gate (over and/or under) with the hydraulic behavior of a stepped spillway, the stepped channel should begin downstream the ogee profile.

Current social and political trends dominant in the world seem to favour building new dams of heights below 50 m, their impact being smaller than that of higher dams for large reservoirs. Most studies performed on stepped spillways refer to higher dams, even if the results are extrapolated and applied to lower dams. To obtain more precise information, a research work was done on models of a scale that makes them representative of dams not higher than 50 m. The results indicate that a significant reduction of basin works can be obtained with stepped spillways instead of flat ones, even in the case of dams of an average/low height. For curved dams, savings in the stilling basin are lower than those obtained in the case of straight ones, but still significant.

10.2 Thermal behavior

A lot of computation time is required for the analysis of the long-term thermo-mechanical behavior of RCC dams using 2-D models. To overcome this difficulty, a modified 1-D strip model has been developed which allows to estimate temperatures and stresses in the core of a RCC dam at low CPU time cost. Temperatures predicted by this model fit the data obtained from a series of thermometers installed in Rialc RCC dam (Spain). Results of such simulations can be used as input parameters for 2-D or 3-D models or if decisions on the construction schedule or on the placing temperature have to be made during the construction phase.

10.3 Bonding between layers

The results of a penetration test performed at different times have shown an excellent correlation with the quality of the bond between layers, evaluated by means of the flexural strength of specimens compacted in two layers. This type of tests is intended to eliminate some of the problems posed by the direct tensile tests. Also with this aim, an special testing device has been developed to improve the alignment of the specimen with the theoretical axis of the load generated by the direct tensile test machine. Results can be deemed satisfactory, most of the specimens being broken around their central part.

ACKNOWLEDGEMENT

The authors want to thank Mr. J. Yagüe and Mr. L. Berga of SPANCOLD, whose help has been essential to make this article possible.

REFERENCES

Table I. RCC dams completed in Spain.

<table>
<thead>
<tr>
<th>Name</th>
<th>River</th>
<th>Basin</th>
<th>Owner</th>
<th>Purpose</th>
<th>Geology</th>
<th>Completion year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erizana</td>
<td>Bahiña</td>
<td>Norte</td>
<td>Com. Gallega</td>
<td>S</td>
<td>Granite</td>
<td>1985</td>
</tr>
<tr>
<td>Castillblanco</td>
<td>Cala</td>
<td>Guadalquivir</td>
<td>Com. Andaluza</td>
<td>S</td>
<td>Diabase & diorite</td>
<td>1985</td>
</tr>
<tr>
<td>Los morales</td>
<td>Morales</td>
<td>Tajo</td>
<td>Com. Madrid</td>
<td>S</td>
<td>Gneiss & granite</td>
<td>1988</td>
</tr>
<tr>
<td>Sta. Eugenia</td>
<td>Jallas</td>
<td>Norte</td>
<td>Carbueros Metalicos</td>
<td>H</td>
<td>Granite & sienite</td>
<td>1988</td>
</tr>
<tr>
<td>Maroto</td>
<td>Izoria</td>
<td>Norte</td>
<td>Com. Pais Vasco</td>
<td>S</td>
<td>Mesozoic limestones & loam</td>
<td>1990</td>
</tr>
<tr>
<td>Hervas</td>
<td>Hervas</td>
<td>Tajo</td>
<td>Com. Extremadura</td>
<td>S</td>
<td>Granite</td>
<td>1990</td>
</tr>
<tr>
<td>Los Canchales</td>
<td>Lacara</td>
<td>Guadiana</td>
<td>Estado</td>
<td>C</td>
<td>Mesozoic limestones</td>
<td>1991</td>
</tr>
<tr>
<td>Burguillos</td>
<td>Montes</td>
<td>Guadiana</td>
<td>Com. Extremadura</td>
<td>S</td>
<td>Cornstone & diabase</td>
<td>1991</td>
</tr>
<tr>
<td>Belen Gato</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic dolomites</td>
<td>1991</td>
</tr>
<tr>
<td>Puebla de Cazaña</td>
<td>Corbones</td>
<td>Guadalquivir</td>
<td>Estado</td>
<td>I</td>
<td>Mesozoic dolomites & loam</td>
<td>1992</td>
</tr>
<tr>
<td>Belen Cañuela</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic chalkoschiste</td>
<td>1992</td>
</tr>
<tr>
<td>Belen Flores</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic chalkoschiste</td>
<td>1992</td>
</tr>
<tr>
<td>Caballars</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic dolomites</td>
<td>1992</td>
</tr>
<tr>
<td>Amatitstros</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic dolomites</td>
<td>1992</td>
</tr>
<tr>
<td>Amatitstros III</td>
<td>R. Belen</td>
<td>Sur</td>
<td>Com. Andaluza</td>
<td>C</td>
<td>Mesozoic dolomites</td>
<td>1992</td>
</tr>
<tr>
<td>Urdalur</td>
<td>Alzania</td>
<td>Ebro</td>
<td>Estado</td>
<td>S</td>
<td>Limolite & mesozoic sandstones</td>
<td>1993</td>
</tr>
<tr>
<td>Arriaran</td>
<td>Arriaran</td>
<td>Norte</td>
<td>Com. Pais Vasco</td>
<td>S</td>
<td>Loams</td>
<td>1993</td>
</tr>
<tr>
<td>Ceniza</td>
<td>Ceniza</td>
<td>Norte</td>
<td>Iberdrola</td>
<td>H</td>
<td>Granite</td>
<td>1993</td>
</tr>
<tr>
<td>Sierra Brava</td>
<td>Pizarroso</td>
<td>Guadiana</td>
<td>Estado</td>
<td>I</td>
<td>Paleozoic slate & grauwake</td>
<td>1994</td>
</tr>
<tr>
<td>Guadalemar</td>
<td>Guadalemar</td>
<td>Guadiana</td>
<td>Estado</td>
<td>S</td>
<td>Paleozoic slate & grauwake</td>
<td>1994</td>
</tr>
<tr>
<td>Boquerón</td>
<td>R. Boquerón</td>
<td>Segura</td>
<td>Estado</td>
<td>C</td>
<td>Limestone & dolomite</td>
<td>1997</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Ebro</td>
<td>Estado</td>
<td>I</td>
<td>Miocene conglomerate</td>
<td>1998</td>
</tr>
<tr>
<td>Atance</td>
<td>R. Salado</td>
<td>Tajo</td>
<td>Estado</td>
<td>I</td>
<td>Gneiss</td>
<td>1998</td>
</tr>
<tr>
<td>Rialb</td>
<td>R. Segre</td>
<td>Ebro</td>
<td>Estado</td>
<td>I</td>
<td>Mesozoic loam & sandstone</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table II. Main features of RCC dams completed in Spain.

<table>
<thead>
<tr>
<th>Name</th>
<th>Height (m)</th>
<th>Crest length (m)</th>
<th>Reservoir capacity $\times 10^6$ m3</th>
<th>Slopes H:V</th>
<th>Concrete volume $\times 10^3$ m3</th>
<th>Volume ratio RCC/CC (%)</th>
<th>Spillway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erizana</td>
<td>12</td>
<td>115</td>
<td>0.48</td>
<td>0.1</td>
<td>0.60</td>
<td>71</td>
<td>No</td>
</tr>
<tr>
<td>Castillblanco</td>
<td>25</td>
<td>124</td>
<td>0.87</td>
<td>Vertical</td>
<td>0.75</td>
<td>86</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Los Morales</td>
<td>28</td>
<td>200</td>
<td>2.84</td>
<td>Vertical</td>
<td>0.75</td>
<td>89</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Sta. Eugenia</td>
<td>83</td>
<td>280</td>
<td>16.60</td>
<td>0.05</td>
<td>0.75</td>
<td>88</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Maroto</td>
<td>53</td>
<td>182</td>
<td>2.23</td>
<td>0.05</td>
<td>0.75</td>
<td>56</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Hervas</td>
<td>33</td>
<td>210</td>
<td>0.22</td>
<td>0.15</td>
<td>0.70</td>
<td>46</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Los Canchales</td>
<td>32</td>
<td>240</td>
<td>15.00</td>
<td>Vertical</td>
<td>0.50–0.80</td>
<td>76</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Burguillos</td>
<td>24</td>
<td>167</td>
<td>2.50</td>
<td>Vertical</td>
<td>0.60</td>
<td>88</td>
<td>Sloping-CC</td>
</tr>
<tr>
<td>Belen Gato</td>
<td>34</td>
<td>158</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>93</td>
<td>Stepped-RCC</td>
</tr>
<tr>
<td>Puebla de Cazaña</td>
<td>71</td>
<td>220</td>
<td>7.40</td>
<td>Vertical – 0.20</td>
<td>0.80</td>
<td>83</td>
<td>Stepped-RCC</td>
</tr>
</tbody>
</table>

(continued)
Table II. (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Height (m)</th>
<th>Crest length (m)</th>
<th>Reservoir capacity ($10^6 m^3$)</th>
<th>Slopes H:V</th>
<th>Concrete volume ($10^6 m^3$)</th>
<th>RCC/CC (%)</th>
<th>Spillway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belen Cágüela</td>
<td>31</td>
<td>160</td>
<td>0.20</td>
<td>0.05</td>
<td>0.75</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Belen Flores</td>
<td>27</td>
<td>87</td>
<td>0.30</td>
<td>0.05</td>
<td>0.75</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Caballar</td>
<td>16</td>
<td>98</td>
<td>0.03</td>
<td>0.05</td>
<td>0.75</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Amatisteros I</td>
<td>11</td>
<td>91</td>
<td>0.03</td>
<td>0.05</td>
<td>0.75</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Amatisteros III</td>
<td>15</td>
<td>78</td>
<td>0.01</td>
<td>0.05</td>
<td>0.75</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>Urdalur</td>
<td>58</td>
<td>396</td>
<td>5.40</td>
<td>Vertical</td>
<td>0.75</td>
<td>48</td>
<td>160</td>
</tr>
<tr>
<td>Arriaran</td>
<td>58</td>
<td>206</td>
<td>3.20</td>
<td>0.05</td>
<td>0.70</td>
<td>13</td>
<td>110</td>
</tr>
<tr>
<td>Cenza</td>
<td>49</td>
<td>640</td>
<td>4.30</td>
<td>Vertical</td>
<td>0.75</td>
<td>8.5</td>
<td>215</td>
</tr>
<tr>
<td>Sierra Brava</td>
<td>53</td>
<td>800</td>
<td>232.00</td>
<td>Vertical</td>
<td>0.75</td>
<td>63</td>
<td>277</td>
</tr>
</tbody>
</table>

Table III. Structural characteristics of RCC dams in Spain.

<table>
<thead>
<tr>
<th>Name of dam</th>
<th>Number and widths of blocks</th>
<th>Vertical joints – type</th>
<th>Lift thickness (m)</th>
<th>Facing concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erizana</td>
<td>Two: 45 + 70m</td>
<td>Formed</td>
<td>0.35</td>
<td>RCC</td>
</tr>
<tr>
<td>Castilblanco de Los Arroyos</td>
<td>Two: 62 + 62m</td>
<td>Formed in blocks & (Start joint in U/S facing)</td>
<td>0.45</td>
<td>RCC</td>
</tr>
<tr>
<td>Los Morales</td>
<td>Two: 84 + 104m</td>
<td>Formed</td>
<td>0.40</td>
<td>RCC</td>
</tr>
<tr>
<td>Santa Eugenia</td>
<td>Four: 80 + 60 + 65 + 90m</td>
<td>Formed</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Maroño</td>
<td>Three: 2 × 60 + 61m</td>
<td>Saw cut</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Hervas</td>
<td>Four: 57 + 32 + 47 + 47m</td>
<td>Formed in blocks & (Joints in U/S facing: 15m)</td>
<td>0.30</td>
<td>CC</td>
</tr>
<tr>
<td>Los Canchales</td>
<td>Two: 65 + 116m</td>
<td>Formed</td>
<td>0.25</td>
<td>RCC</td>
</tr>
<tr>
<td>Burguillos del Cerro</td>
<td>Four: 40 + 65 + 45 + 17m</td>
<td>Driven metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Belen Gato</td>
<td>Three: 3 × 53m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Puebla de Cazalla</td>
<td>Five: 20 + 3 × 60 + 20m</td>
<td>Saw cut (partial) and formed</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Belen Cágüela</td>
<td>Three: 3 × 54m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Amatisteros I</td>
<td>Two: 2 × 46m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Caballar I</td>
<td>Two: 2 × 49m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Blen Flores</td>
<td>Two: 2 × 43m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Amatisteros III</td>
<td>Two: 2 × 39m</td>
<td>Metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Urdalur</td>
<td>Five: 77 + 96 + 81 + 65 + 70m</td>
<td>Formed in blocks & (Joints in U/S facing: 21m)</td>
<td>0.30</td>
<td>CC</td>
</tr>
<tr>
<td>Arriaran</td>
<td>Five: 12 + 65 + 61 + 42 + 18m</td>
<td>Formed</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Cenza</td>
<td>Two: only in the upper 20m</td>
<td>Formed (upper 20m)</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Sierra Brava</td>
<td>Five: 225 + 135 + 90 + 90 + 245m</td>
<td>Formed (driven metal plates)</td>
<td>0.30</td>
<td>CC (Curbs)</td>
</tr>
<tr>
<td>Guadalemar</td>
<td>Continuous: 400m</td>
<td>No joints</td>
<td>0.30</td>
<td>RCC (Curbs)</td>
</tr>
<tr>
<td>Rambién del Boquerón</td>
<td>Seven: 73 + 35 + 37 + 16 + 37 + 35 + 57m</td>
<td>Derived metal plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Val</td>
<td>Eight: 3 × 60 + 5 × 40m</td>
<td>Formed</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Atance</td>
<td>Six: 6 × 30m</td>
<td>Driven plastic plates</td>
<td>0.30</td>
<td>RCC</td>
</tr>
<tr>
<td>Rialb</td>
<td>Sixteen: 7 × 40 + 3 × 28 + 6 × 40m</td>
<td>Formed</td>
<td>0.30</td>
<td>RCC</td>
</tr>
</tbody>
</table>
Table IV. RCC Mixes.

<table>
<thead>
<tr>
<th>Name of dam</th>
<th>Max. size of aggregates (mm)</th>
<th>Aggregate quantity (kg/m³ of concrete)</th>
<th>Sand quantity (kg/m³ of concrete)</th>
<th>Water quantity (l/m³ of concrete)</th>
<th>Cementitious material (kg/m³ of concrete)</th>
<th>F/(C + F)%</th>
<th>Ratio W/C + F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erizana</td>
<td>100</td>
<td>1668</td>
<td>532</td>
<td>115</td>
<td>90</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Castilblanco De los Arroyos</td>
<td>40</td>
<td>1452</td>
<td>628</td>
<td>102</td>
<td>102</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Los Morales RCC1</td>
<td>40</td>
<td>1426</td>
<td>618</td>
<td>108</td>
<td>81</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Los Morales RCC2</td>
<td>80</td>
<td>1548</td>
<td>562</td>
<td>98</td>
<td>74</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Sta. Eugenia RCC1</td>
<td>70</td>
<td>1635</td>
<td>552</td>
<td>100</td>
<td>88</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Sta. Eugenia RCC2</td>
<td>100</td>
<td>1830</td>
<td>430</td>
<td>90</td>
<td>72</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Maroto RCC1</td>
<td>70</td>
<td>1575</td>
<td>670</td>
<td>100</td>
<td>80</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Maroto RCC2</td>
<td>70</td>
<td>1575</td>
<td>670</td>
<td>98</td>
<td>65</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Hervas</td>
<td>80</td>
<td>1540</td>
<td>540</td>
<td>95</td>
<td>80</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Burguillios</td>
<td>60</td>
<td>1662</td>
<td>593</td>
<td>85</td>
<td>75</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Del Cerro</td>
<td>60</td>
<td>1662</td>
<td>593</td>
<td>85</td>
<td>75</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Los Canchales RCC1</td>
<td>40</td>
<td>1490</td>
<td>620</td>
<td>105</td>
<td>84</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Los Canchales RCC2</td>
<td>80</td>
<td>1650</td>
<td>585</td>
<td>100</td>
<td>70</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Puebla</td>
<td>40</td>
<td>1409</td>
<td>720</td>
<td>127</td>
<td>85</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>De Cazalla RCC1</td>
<td>40</td>
<td>1364</td>
<td>800</td>
<td>105</td>
<td>73</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Amatisteros I RCC1</td>
<td>40</td>
<td>1364</td>
<td>800</td>
<td>105</td>
<td>73</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Amatisteros III RCC2</td>
<td>80</td>
<td>1512</td>
<td>688</td>
<td>113</td>
<td>80</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Belen Gato</td>
<td>80</td>
<td>1524</td>
<td>691</td>
<td>90</td>
<td>72</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Belen Caguéla</td>
<td>80</td>
<td>1524</td>
<td>691</td>
<td>90</td>
<td>72</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Belen Flores</td>
<td>80</td>
<td>1524</td>
<td>691</td>
<td>90</td>
<td>72</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Urdalur</td>
<td>80</td>
<td>1524</td>
<td>691</td>
<td>90</td>
<td>72</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Arriaran</td>
<td>80</td>
<td>1730</td>
<td>550</td>
<td>100</td>
<td>85</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Sierra Brava</td>
<td>80</td>
<td>1590</td>
<td>610</td>
<td>95</td>
<td>80</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Ceniza</td>
<td>60</td>
<td>1519</td>
<td>733</td>
<td>95</td>
<td>70</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Guadalemar</td>
<td>80</td>
<td>1364</td>
<td>836</td>
<td>100</td>
<td>60</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Rambla</td>
<td>80</td>
<td>1568</td>
<td>615</td>
<td>94</td>
<td>55</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Del Boquerón Val</td>
<td>80</td>
<td>1552</td>
<td>660</td>
<td>100</td>
<td>80</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Atance</td>
<td>40</td>
<td>1332</td>
<td>811</td>
<td>109</td>
<td>57</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Rialb</td>
<td>100</td>
<td>1695</td>
<td>570</td>
<td>95</td>
<td>70</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

Table V. Main features of Spanish RCC dams under construction.

<table>
<thead>
<tr>
<th>Name</th>
<th>Basin</th>
<th>Height (m)</th>
<th>Crest length (m)</th>
<th>Reservoir capacity (10⁶ m³)</th>
<th>Concrete volume (10⁸ m³)</th>
<th>Completion Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esparragal</td>
<td>Guadalquivir</td>
<td>21</td>
<td>391</td>
<td>4</td>
<td>60 (RCC)</td>
<td>2003</td>
</tr>
<tr>
<td>Encisco</td>
<td>Ebro</td>
<td>105</td>
<td>378</td>
<td>47</td>
<td>750 (CC + RCC)</td>
<td>—</td>
</tr>
</tbody>
</table>
RCC dams in Spain present and future

RCC dams in China
Proceedings of International Symposium on RCC dams 1999 April in Duijiangyan, China.
Proceeding of the 2002 International Conference on Roller Compacted Concrete Dam Construction in Middle East.

30 years history of Roller-Compacted Concrete dams in Japan

The state-of-the-art of RCC dams in 2003 an update of ICOLD Bulletin No. 125
Some recent innovative methods and techniques in the design and construction of RCC dams

Hansen, K.D. , McLean, F.D. and Forbes, B.A. Shear Strength of Roller Compacted Concrete Dams. Proc. of the International Symposium on Roller Compacted Concrete Dams, Chengdu, April 1999.

Materials and RCC quality requirements

American Society for Testing and Materials Concrete aggregates Standard Specification C33, ASTM, Philadelphia;

Andriolo, F.R. , The use of Roller Compacted Concrete, Oficina de Texto, S Paulo, Brazil, 1998;

Aoyagi, Y. and Endo, T. Laboratory and Field tests on Roller Compacted Concrete Materials with Particular Reference to Increased use of Fly Ash: Proceedings of The International Symposium on RCC Dams-Beijing, China, November 1991;

Fang Kunhe and Zheng Li In Investigation in Fly Ash Content of Roller Compacted Concrete: Proceedings of The International Symposium on RCC Dams-Beijing, China, November 1991;

Andriolo, F.R. and Scanduzzi, L. Concreto e Seus Materiais, Ensaios e Propriedades, Editora Pini, S Paulo, Brazil, 1986;

Chen Zisen and Huang Xutong , Requirements of Admixtures for RCC, in: Proceedings of The International Symposium on RCC Dams Chengdu, China, October 1999;

American Society for Testing and Materials Standard Test of Method for determining Consistency and Density of Roller Compacted Concrete Using a Vibrating Table, C-1170, ASTM, Philadelphia;

Shimizu, S. and Yanagida, T. , Large Sized Specimen Compaction Device in RCD Construction Method-Engineering for Dams, No. 26B86;

78 20 Pacelli, W.A. , Pesquisa e Perspectivas de Futuro Envolvendo o CCR, in: Proceedings of The II Simposio Nacional de Concreto de Rolo-Curitiba, Brazil, March, 1996;

Hermida, G. , Sanchez, J. , Rodrigues Andriolo, F. and Erlon Arfelli Ultrasonic Energy, an effective method to determine the setting times on RCC and the maximum time to obtain a hot joint. Miel-I dam (Colombia)In Proceedings of The 2002 International conference on Roller Compacted Concrete Dam construction in Middle East, Iribid, Jordan, April, 2002;

Hhermida, G. , Bollati, M. and Rivas, J.L. Determination of the Times of Setting in Rolled Compacted Concrete (Experience of Six Projects), in: Proceedings of The IV International Symposium on Roller Compacted Concrete Dams, Madrid-Spain 2003;

RCC use in dam rehabilitation projects

Performance of Roller Compacted Concrete (RCC) dams: An honest assessment

Spanish experiences during impoundment

Cindere dam 107 m high Roller Compacted Hardfill Dam (RCHD) in Turkey

Successful large RCC dams: What are the common features?

The value engineering study of Marun regulating dam in Iran

ICOLD 2001. Nonstructural risk reduction measures; Benefits and costs for Dams, ICOLD.

El Atance dam (Spain): an example of an RCC-friendly design and construction

Value-Engineering at Olivenhain Dam, USA

Alternative solutions for the Ibiur Dam □□□ conventional concrete vs. RCC

Reconstruction of the Villarpando Dam in the Dominican Republic using Roller Compacted Concrete

Comparison between the execution technologies of Porce II and Beni Haroun dams

Ib□□□□ez de Aldecoa, R and Sanz, M. □□□Presas extranjeras de HCR con intervenc□□□ de empresas espa□□□olas□□□Proceedings of Jornada T□□cnica sobre Presas de Hormigu□□□ Compactado, May 2000, Madrid, Spain.

Ib□□□□ez de Aldecoa, R. and Bendjaballaah, Z. □□□ Bet□□□ compact□□ a rouleau pour la construction des barrages. La r□□alisation du barrage de Beni Haroun□□□Comptes rendus de la Journ□□e Technique sur les techniques du b□□□ compact□□ a rouleau, Juin 2000, Beni Haroun Dam, Mila, Algerie.

RCC construction □□□ acceptable means and methods

American Concrete Institute, ACI 309.5R.00, □□□ Compaction of Roller-Compacted Concrete□□□

RCC dams design and construction in Morocco

Lean RCC dams laboratory testing methods and quality control procedures during construction

Three RCC dams for Ghatghar project An Indian experience

Dr. Malcolm Dunstan November 99 Report on construction methodology for Upper and Lower Dam.

Trial mix programme for Jahgin Dam The first major RCC dam in Iran

New trends of construction methodology and its influence in the research for Brazilian Roller Compacted concrete (RCC)

Batista, Elizabeth Leopoldina; Graña, Newton Goulart; Bittencourt, Rubens Machado; Andrade, Walton Pacelli. First Brazilian Experience Using the Horizontally Advanced Sloped Layer Construction of RCC at Lajeado Dam. WSSD 2002.

Brazilian experience of Roller Compacted Concrete (RCC)

Batista, Elizabeth Leopoldina; Graña, Newton Goulart; Bittencourt, Rubens Machado; Andrade, Walton Pacelli. First Brazilian Experience Using the Horizontally Advanced Sloped Layer Construction of RCC at Lajeado Dam. WSSD 2002.

Determination of setting times on RCC by means of ultrasonic energy (experience with six projects)

Toker dam, a contractor's perspective on constructing RCC projects in developing countries

The Toker River water supply project in Eritrea. Hydropower and Dams, 1997, McCormick, Grabow, Hicks, Todaro.

Characteristics of dam-concrete applied to concrete dams constructed by the Water Resources Development Public Corporation (WARDEC) mix design and quality control

Sadahiro, T. & Morta, Y. 1991. Quality of concrete contained flyash at a replacement percentage of 35%. Japan Dam Engineering (54)

Takah, K. 1996. Effective utilization of low-grade aggregate and fine grain materials in fine aggregate (Hiyoshi Dam). Japan Dam Engineering (121)

Experience gained during design and construction of the Jahgin RCC cofferdam

Pedrég♥ dam: first RCC experience in Portugal

Trial mix programme and full-scale trials for Olivenhain RCC dam, USA

Development of Roller Compacted Concrete dam in Thailand

Sogreah Consulting Engineer, October 1985, Pak Mun Multipurpose Project, Feasibility Study Report, prepared for Electricity Generating Authority of Thailand (EGAT).
Sogreah Consulting Engineer, September 1989, Pak Mun Project Definite Study Phase 2, prepared for EGAT.
P. Jitvutikrai, T. Ngarmcroh and S. Tangermsirikul, May 2003, Roller Compacted Concrete for Khlong Tha Dan Dam.

Miel I: RCC dam, height world record

The development of RCC arch dams

The dam of Beni Haroun [Algeria]

Distributed fibre optic temperature measurements in RCC dams in Jordan and China

Temperature control and design of joints for RCC arch dams
Hollingworth, F. , Hooper, D.J. & Geringer, J.J. 1989. Roller compacted concrete arched dams, Water Power and Dam Construction,
November, 2934.

Contraembalse de Moncif, a hardfill dam constructed in the Dominican Republic
P. Londe and M. Lino , The Faced Symmetrical Hardfill Dam: a new concept for RCCInternational Water Power & Dam Construction,
The Gravity Dam: A Dam for the futureICOLD, Bulletin 117.

Repeated joint-grouting of Roller Compacted Concrete arch dam
Zhong Yongjiang , Structural Design Features of Shapai RCC Arch Dam. Proceedings of International Symposium on RCC Dam, April 21
to 25, 1999. Chengdu, China, pp551659.
Chen Gaixin , Ji Guojin and Huang Guoxin , Discussion on Questions of Joint Repeated-grouting of RCC Arch Dam, Proceedings of 2001
Zhu Suhua , Liu Gengjun , Construction Technology of Shapai RCC Arch Dam, Proceedings of 2001 National Symposium on RCC
Yao Shuanxi , Cai Yunpeng , A Brief Introduction on Design of Linhekou RCC Arch Dam, Proceedings of 2001 National Symposium on

New design method of RCC high arch dam
Zhu bofang , Temperature stress and design of joint in arch dam of Roller Compacted Concrete, Water power, 1992(09).
Chen qiuhua , New technology of making joint in arch dam of Roller Compacted Concrete, Water power, 2002(01).
Chen qiuhua etc , Research of technology of cooling by cooling pipe embedded in high RCC arch dam, Design of hydropower station,
2001(03).
Chen qiuhua etc , Research of structural joint design in Shapai arch dam of Roller Compacted Concrete, design of hydropower station,
2002(01).

The use of pulverized aggregates for concrete production
Batista, Elizabeth Leopoldina , Grafl Newton Goulart , Bittencourt, Rubens Machado , Andrade, Walton Pacelli . First Brazilian
Experience Using the Horizontally Advanced Sloped Layer Construction of RCC at Lajeado Dam SSD 2002.
BabJ.N. , Rahuan, L.R. , Pimenta, M.A. , Pinheiro, M.L. , Barbin, A.S. , Andrade, W.P. Roller-compacted Concrete From Cana-brava
Hydroelectric Plant SSD 2002.
Muniz, Francesca Cheln , Guerra, Elcio Antonio , Santos, Mªia Campos dos , Andrade, Walton Pacelli de . Agregado Pulverizado □
Structural design of Cindere Dam

CSG method using muck excavated from the dam foundation

Design concept of trapezoid-shaped CSG dam

Concept of CSG and its material properties

Design guidelines for Roller Compacted Concrete lift joints
Space does not allow for a complete listing of all references used. A complete list of references for this paper can be found in the following publication currently in press:

Seismic stability and stress-strain state of a new type of FSHRCC dams
Additives in RCC Research and a real case

The construction of temporary structures by CSG method in Tokuyama Dam project

Kimifumi Yakuushi, Masayoshi Amano, Takao Taguchi, Shigenobu Sakon, and Goro Fuchigami, Design, Construction and Quality Control Technique of CSG Method for Tokuyama Dam Project, Dam Technology No. 155, pp. 198-200, Aug. 1999

Kazunori Wada, Development of JOICE High-speed Continuous Mixer and Its Application to Dam Projects, Dam Japan No. 668, pp. 57-69, June 2000

Dynamic properties of CSG

Synthetic geomembranes in RCC dams: since 1984, a reliable cost effective way to stop leakage

Thermal analysis of Roller Compacted Concrete

Furnas Team, Concrete Laboratory, Support and Technical Control Department; Concretos: massa, estrutural, projetado e compactado com rolo: ensaios e propriedades e editor Walton Pacelli de Andrade e São Paulo: Pini, 1997.

Gambale, E. A. Bosco, J. M. C. Análise Técnica do Concreto da Barragem de Canoas 11th Symposium on Works in Roller Compacted Concrete Curitiba PR, 1996.

Feasibility study of stepped spillways in RCC dams controlled by a Tainter gate

Special design requirements for high RCC gravity dam

Numerical modelling of thermal stress in RCC dams using 2-D finite element method: Case study

VAN Breugel, K. 1980. Artificial cooling of hardening concrete. Research Report Concrete Structures, Report 5-80-9, Delft University of Technology, Faculty of Civil Engineering, Department of Structural Concrete.
A modified 1-D strip model for thermo-mechanical analysis of RCC dams

Thermal stress simulation and possible crack analysis of Mianhuatan RCC dam

Study on the thermal compensation method for high RCC dam using concrete with MgO

The software package for the thermal control of concrete dams and its engineering applications
Huang Shuping et al. The emulation analysis of thermal stress on RCC arch dams, RCD 1999 China.

Constitutive modelling of Roller Compacted Concrete
Kalantary, F. & Aghjani, M. 2002. Hardening behaviour of stabilized marl with cement, 1st Conf Ground Improvement, Tehran, Iran

Thermo-mechanical analysis of Roller Compacted Concrete dams

Miel I dam Design of the geotechnical and structural instrumentation program for the World’s highest RCC dam

Design of Zhoming RCC gravity dam
Li Qi xiong, Dong Qin jian & Mao Yin-qi, 2001, Design of RCC Gravity Dam of Mianhutan Hydropower Station. Water Power 2001(7): 2457

A direct tensile strength for Roller Compacted (RCC) gravity dams
Design features for Porce III RCC dam

Investigation of influence of placement schedule on the thermal stresses of RCC dams, using finite element analysis
674 ACI. 1996. Mass Concrete Reported by ACI Committee 207. USA.
Crichton, J.A., Benbenati, I., Qi, J.T. & Williams, T. 2000. KINTA RCC Dam - are over-Simplified thermal Structural Analysis valid?. GHD Pty Ltd. Brisbane.

An approach to the actual value of the modulus of deformation in concrete dams

Research on prototype observation and feedback analysis of RCC gravity dams

DMR, a new geomechanics classification for use in dams foundations, adapted from RMR
Benítez E. (2003) Personal communication
Characterization of the pressure field over a stepped spillway in Roller Compacted Concrete dams

Energy loss on stepped spillways

Porosity studies for Roller Compacted Concrete
Instituto de Qualidade e Metrologia bExpressão da incerteza da medição bRio de Janeiro, 2000, 45p.

Investigations on the modulus of elasticity of young RCC
Braunschweig. IBMB der Technischen Universität Carolo-Wilhelmina zu Braunschweig.
Use of wet coal ashes (type F) in RCC dams

Effects on Roller Compacted Concrete of Isfahan slag

Schneider, E. (1994) Roller compacted concrete dams, properties and cracking, myths, misconceptions, new and controversial issues [International Workshop on Roller Compacted Concrete, University of Laval, Canada.

Influence of mineral and pozzolanic admixtures on Roller Compacted Concrete

Effect of air entrainment on the workability and strength of Roller Compacted Concrete for dam construction

Optimization of the compaction time with the effects of different pozzolans (type and dosage) on the mechanical properties of RCC

Hansen K.D. Personal communication 1999.

ACI Roller Compacted Concrete 207.5R-89. Re-approved 1997.

Shekarchi M., Debiki G., Clastres P., and Billard Y. Influence of silica Fume on permeability of concrete to oxygen for temperatures up to 500°C. Sixth CANMET, ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok, Thailand 1998.

Laboratory previous tests for Sa Stria dam (Italy) performed using three different mineral admixtures

RCC mix and thermal behaviour of Miel I dam design stage

Stephen Tatro and Ernest Schrader (1992), Thermal analysis for RCC. To practical Approach. Roller Compacted Sums up III, ASCE.

Informs of design of the Miel I dam.

Reaction between certain Jordanian rock-aggregate and cement in Roller Compacted Concrete (RCC) dams

ACI 221.1R 1998, State of the art report on alkali-aggregate Reactivity. ACI Committee 221 on Aggregates. American Concrete Institute.

A comparative study of mechanical properties of RCC trial mix using two different cementitious materials (fly ash and natural pozzolan)

ACI Committee 207, Roller Compacted Concrete (ACI 207.5 R-80), American Concrete Institute, Detorit, 1980, 22 pp.

Horizontal construction joints parameters

RCC properties characterization in laboratory test fills

Discussions regarding the use of materials and the design of RCC dams

Experimental study on mechanical characteristics of super lean-mix concrete

Studies on the quality of Roller Compacted Concrete with low cement content on Ueno dam

DMA □□□ simple device for measuring unit water in RCC mixtures
Proceedings , 1996 II National Seminar on Roller Compacted Concrete, Curitiba.
Furnas Team □□□ Editor Walton Pacelli de Andrade □□□ Concretos: massa, estrutural, projetado e compactado com rolo □□□ ensaios e propriedades □□□

Review of some points in the RCC practice for dam construction

Construction methods for the first large RCC dam in Iran

Coring testing program at the Olivenhain dam

Controlling RCC mix workability for Olivenhain dam construction

Benefits of the full-scale trial performed for Beni Haroun dam (Algeria)
Quality control in RCC dams using the direct tensile test on jointed cores

Mather, B. How soon is soon enough? Proceedings of International Symposium on Concrete Technology, Monterrey, Mexico, March 1975.

RCC quality control applied in the structures of 1st and 2nd construction stages of the HPP Tucuruí

Vasconcelos G. R. L., Franco H. C. B., Manhargo J. M. July of 1983 Application of Concrete Rolled in Definitive Structures of the Dam of the hydroelectric power station TucuruíRACON pages 23 to 35;

Neto F. F., Silva J. D., Lacerda S. S., Bandeira O. M. August of 1999 INHE TucuruíUnits 13 to 23 Execution of the RCC test fill ETC-USG-10-0010 - RE page 33/92; and,

Ensuring quality control when building RCC dams

Quality control RCC of Dona Francisca dam

Neto F. F., Silva J. D., Lacerda S. S., Bandeira O. M. August of 1999 INHE TucuruíUnits 13 to 23 Execution of the RCC test fill ETC-USG-10-0010 - RE page 33/92; and,

American Concrete Institute . 1960. Evaluation of Strength Tests of Concrete (ACI 214), ACI Bibliography, Detroit USA.

American Concrete Institute . 1977. Recommended Practice for Evaluation of Strength Test Results of Concrete (ACI 214), ACI Bibliography, Detroit USA.
Development of a direct tensile strength test procedure for Roller Compacted Concrete characterization

Code M. CEB-FP-1990, punto 2.1.2.2 □□□Resistencia a Tracci□□n y par□□metros de fractura□□□ (GEHO-Comité Euro-International du Beton 1□□□1990).
RILEM □□□Materials and Structures. Vol. 6, No. 35□□□PCP/: □□□Direct Tension of Concrete Specimen□□□ (RILEM TC14-CPC/Final Nov-1975).

Construction of Beni Haroun Dam (Algeria)

Extensive shear testing for Saluda dam Roller Compacted Concrete

Dona Francisca Hydroelectric power plant □□□design and construction of the RCC structures

Study on properties of RCC for Cofferdam III of the Three Gorges Project

Safety monitoring design and implementation of RCC cofferdam on the right bank of Three Gorges Project

Construction of Urdalur dam and project to repair the seepage through the drainage system

Rolled Compacted Concrete dams: current construction methods, output and permeabilities
B. Forbes. The Sloped Layer Method and Other Techniques for Improving Quality and Productivity on Modern RCC Dams, Proceedings from the 2002 International Conference on RCC Dam Construction in the Middle East.

Long-term performance of Roller Compacted Concrete at Upper Stillwater dam, Utah, USA
American Concrete Institute 1996. Committee 207.5R-89, Roller Compacted Mass Concrete, 1996 ACI Manual of Concrete Practice: 207.5R-89-19. Detroit: ACI.
American Concrete Institute, Committee 2000. 207.5R-1999, Roller Compacted Mass Concrete, 2000 ACI Manual of Concrete Practice. Detroit: ACI.
American Concrete Institute 2002. Committee No. 211.3R, Guide for Selecting Proportions for No-Slump Concrete, 2002 ACI Manual of Concrete Practice: 211.3R-2. Detroit: ACI.
McTavish, Robert F. 1988. 270.
Waterproofing of Cenza dam

Design, construction and operation of Cenza dam (Spain)

Miel I dam, seepage control and behavior during impoundment

Behaviour analysis of RCD dam body
JCOLD (Japan Commission on Large dams) . 1986. Standard for management of dams. Tokyo

Three years of physicochemical seepage water analysis from Jordao River Dispersion RCC first Brazilian dam: diagnose

Seepage and treatment of cracks in Salto Caxias dam

Capanda □□□ RCC dam □□□12 years quality control data
Tavares, Manuel de Almeida □□□Contribute for the Construction of Dams in Roller Compacted Concrete □□□Dissertation for obtaining of Master□□□ degree in Construction □□□Technical University of Lisbon □□□Technical Superior Institute.
Francisco Rodrigues Andriolo and Bento Carlos Sgarboza □□□Inspection and Quality Control of the Concrete.
Brazilian Association of Technical Standards □□□ABNT.
Roller Compacted Concrete Dams □□□Proceedings of the International Symposium held in Santander, on 24 October 1995 □□□Volume One □□□Materials, planning and design.
The first built Roller Compacted Concrete arch dam □ Puding Dam