Glutathione:
Metabolism and Physiological Functions

Edited by
José Viña
PREFACE

In the last two decades our knowledge of the functions of glutathione in cell metabolism has been constantly increasing. Bibliometric studies show a growing interest in glutathione by the scientific community. There is strong evidence that this peptide has a prominent role in several cell functions ranging from antioxidant defense to regulation of metabolic pathways or of hormonal action.

Furthermore, methods for the accurate measurement of glutathione levels, specially oxidized glutathione, have appeared recently and have led us to revise old concepts regarding glutathione status of cells. On the other hand, it is possible to modify the glutathione levels in cells. This has advantages and shortcomings: if used well it may help us to understand and to treat important diseases. However, knowledge of the side effects of changing the glutathione status of cells is also of primary importance.

In the past years the role of glutathione in areas such as detoxication of xenobiotics or maintenance of cell structure and function was established. However, more recently, a prominent role of glutathione in fields such as nutrition, aging, and immunology is becoming fully recognized. It is obvious that a good knowledge of the physiological properties of glutathione will help the clinician to understand the physiopathology and therapeutics of glutathione-related diseases.

Thus, understanding the metabolism and physiological functions of glutathione and related enzymes may be of great importance to the investigators or the students in various areas of scientific knowledge and also to the professionals that note that glutathione becomes relevant in their fields of interest and who want to keep up with the changing scene in their areas of expertise.

The aim of this book is to provide not only well-established thought but also up-to-date information that will help those interested in the metabolism and properties of glutathione.
José Viña is Professor and Chairman of the Department of Physiology, University of Valencia.

Dr. Viña received his M.D. and his Ph.D. (cum laude) in 1978, both at the University of Valencia. He carried out postgraduate research at the Metabolic Research Laboratory, University of Oxford, under the direction of Sir Hans A. Krebs. Part of his research was supported by a FEBS fellowship awarded to Dr. Viña.

Dr. Viña is a member of the American Physiological Society, the Biochemical Society, the Spanish Society of Physiological Sciences, and the Spanish Biochemical Society. He has received the Boehringer Prize for biochemical research.

Dr. Viña is the author of over 60 scientific papers. His current major research interests relate to the role of sulfur amino acids and glutathione in cell functions, especially the aging process.
CONTRIBUTORS

Theo Akerboom, Ph.D.
Institute of Physiological Chemistry I
University of Dusseldorf
Dusseldorf, West Germany

Luigi Atzori, M.D.
Department of Toxicology
Karolinska Institute
Stockholm, Sweden

Joseph V. Bannister, D.Phil.
Professor
Biotechnology Centre
Cranfield Institute of Technology
Cranfield, England

William H. Bannister, D.Phil.
Professor
Department of Biomedical Sciences
University of Malta
Msida, Malta

J. A. Bárcena, Ph.D.
Department of Biochemistry and
Molecular Biology
University of Cordoba
Cordoba, Spain

R. Barouki, M.D.
U-99 INSERM
Henri Mondor Hospital
Creteil, France

Craig R. Baumrucker, Ph.D.
Associate Professor
Department of Dairy and Animal Science
The Pennsylvania State University
University Park, Pennsylvania

Jeffrey B. Blumberg, Ph.D.
Professor
School of Nutrition and Associate
Director/Senior Scientist
USDA Human Nutrition Research Center
Tufts University
Boston, Massachusetts

J. A. Bocanegra, Ph.D.
Department of Biochemistry and
Molecular Biology
University of Cordoba
Cordoba, Spain

Anders Brunmark, Ph.D.
Research Associate
Department of Pathology II
University of Linköping
Linköping, Sweden

Enrique Cadenas, Ph.D.
Associate Professor
Institute for Toxicology
University of Southern California
Los Angeles, California

P. G. Campbell, Ph.D.
The Allegheny-Singer Research Institute
Pittsburgh, Pennsylvania

José V. Castell, Ph.D.
Professor of Biochemistry
Experimental Hepatology Unit
Centro de Investigacion del Hospital la Fe
Servicio Valenciano de Salud
Valencia, Spain

George B. Corcoran, Ph.D.
Associate Professor
Toxicology Program
College of Pharmacy
University of New Mexico
Albuquerque, New Mexico

Ian A. Cotgreave, Ph.D.
Department of Toxicology
Karolinska Institute
Stockholm, Sweden

Norman P. Curthoys, Ph.D.
Professor and Chairman
Department of Biochemistry
Colorado State University
Fort Collins, Colorado
Consuelo Guerri, Ph.D.
Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia
Valencia, Spain

Darryl L. Hadsell
Department of Dairy and Animal Science
The Pennsylvania State University
University Park, Pennsylvania

J. Hanoune, M.D., Ph.D.
U-99 INSERM
Henri Mondor Hospital
Creteil, France

Otto Hockwin, Dr.rer.nat.
Professor
Department of Experimental Ophthalmology
University of Bonn
Bonn, Federal Republic of Germany

Arne Holmgren, M.D., Ph.D.
Professor
Department of Physiological Chemistry
Karolinska Institute
Stockholm, Sweden

Inge Korte, Dr.rer.nat.
Department of Experimental Ophthalmology
University of Bonn
Bonn, Federal Republic of Germany

Andries Sj. Koster, Ph.D.
Assistant Professor
Department of Pharmacology
Faculty of Pharmacy
University of Utrecht
Utrecht, The Netherlands

Y. Laperche, Ph.D.
U-99 INSERM
Henri Mondor Hospital
Creteil, France

Amparo Larrauri, Ph.D.
Experimental Hepatology Unit
Centro de Investigacion del Hospital la Fe Servicio Valenciano de Salud
Valencia, Spain

Agne Larsson, M.D., Ph.D.
Professor
Department of Pediatrics
Uppsala University
Uppsala, Sweden

Juan López-Barea, Ph.D.
Professor
Department of Biochemistry and Molecular Biology
University of Cordoba
Cordoba, Spain

A. López-Ruiz, Ph.D.
Department of Biochemistry and Molecular Biology
University of Cordoba
Cordoba, Spain

E. Martínez-Galisteo, Ph.D.
Department of Biochemistry and Molecular Biology
University of Cordoba
Cordoba, Spain

Simin N. Meydani, D.V.M., Ph.D.
Associate Professor
Nutritional Immunology and Toxicology Laboratory
USDA Human Nutrition Research Center
Tufts University
Boston, Massachusetts

Jaime Miquel, Ph.D.
Research Associate
Linus Pauling Institute of Science and Medicine
Palo Alto, California
and Associate Professor
Department of Neurochemistry
Faculty of Medicine
University School of Medicine
Alicante, Spain

Peter Moldéus, Ph.D.
Professor
Department of Toxicology
Karolinska Institute
Stockholm, Sweden
M. L. Muñoz, M.D.
Center for Medical Documentation and Informatics
Valencia, Spain

Gerald L. Newton, B.A.
Staff Research Associate
Department of Chemistry
University of California at San Diego
La Jolla, California

Federico V. Pallardo, M.D., Ph.D.
Postdoctoral Fellow
Department of Physiology
University of Valencia
Valencia, Spain

J. Peinado, Ph.D.
Department of Biochemistry and Molecular Biology
University of Cordoba
Cordoba, Spain

W. B. Quay, Ph.D.
Department of Molecular and Cell Biology
University of California
Berkeley, California
and Bio-Research Laboratory
Napa, California

William B. Rathbun, Ph.D.
Associate Professor
Department of Ophthalmology
University of Minnesota
Minneapolis, Minnesota

Frank A. M. Redegeld, Ph.D.
Department of Pharmacology
Faculty of Pharmacy
University of Utrecht
Utrecht, The Netherlands

M. Roberfroid
Professor
Laboratoire de Biochimie Toxicologique et Cancérologique
Catholic University of Louvain
Brussels, Belgium

Francesco J. Romero, M.D., Ph.D.
Assistant Professor
Department of Physiology
Faculty of Medicine
University of Valencia
Valencia, Spain

Guillermo T. Sáez, M.D., Ph.D.
Assistant Professor
Department of Biochemistry and Molecular Biology
School of Medicine
University of Valencia
Valencia, Spain
and Biotechnology Centre
Cranfield Institute of Technology
Cranfield, England

Russell Scaduto, Jr., Ph.D.
Department Cellular and Molecular Physiology
The Milton S. Hershey Medical Center
Hershey, Pennsylvania

Helmut Sies
Professor
Institute of Physiological Chemistry I
University of Düsseldorf
Düsseldorf, Federal Republic of Germany

Noriko Tateishi, Ph.D.
Assistant Professor
Department of Oncology
Biomedical Research Center
Osaka University Medical School
Osaka, Japan

M. L. Terrada, M.D., Ph.D.
Professor of Medical Documentation and Director
The Center for Medical Documentation and Informatics
University of Valencia
Valencia, Spain

Paul J. Thornalley, Ph.D.
Lecturer
Department of Chemistry and Biological Chemistry
University of Essex
Colchester, England
V. Thybaud, Ph.D.
Laboratoire de Biochimie Toxicologique et Cancérologique
Catholic University of Louvain
Brussels, Belgium

Gisa Tieg, Ph.D.
Faculty of Biology
University of Konstanz
Konstanz, West Germany

Wout P. van Bennekom, Ph.D.
Assistant Professor
Department of Pharmaceutical Analysis
Faculty of Pharmacy
University of Utrecht
Utrecht, The Netherlands

Luis A. Videla, M.Sc.
Professor
Department of Biological Sciences
Faculty of Medicine
University of Chile
Santiago, Chile

Theo J. Visser, Ph.D.
Professor
Department of Internal Medicine III and Clinical Endocrinology
Erasmus University Medical School
Rotterdam, The Netherlands

Hans Weber, Ph.D.
Senior Medical Writer
Syntex Laboratories, Inc.
Palo Alto, California

Marianne Weis, M.Sc.
Department of Toxicology
Karolinska Institute
Stockholm, Sweden

Albrecht Wendel, Ph.D.
Professor
Faculty of Biology
University of Konstanz
Konstanz, West Germany

Christoph Werner, Ph.D.
Faculty of Biology
University of Konstanz
Konstanz, West Germany

Bradley K. Wong, Ph.D.
Senior Scientist
Department of Pharmacokinetics/Drug Metabolism
Parke-Davis Pharmaceutical Research
Ann Arbor, Michigan
DEDICATION

To my wife Pilar and to our children Pepe, Tomás, and María-Aurora
TABLE OF CONTENTS

Chapter 1
Publications on Glutathione, 1983 to 1987. A Bibliometric Study 1
M. L. Terrada and M. L. Muñoz

Chapter 2
Determination of Tissue Glutathione ... 11
Frank A. M. Redegeld, Andries Sj. Koster, and Wout P. van Bennekom

Chapter 3
Manipulation of Liver Glutathione Status — A Double-Edged Sword 21
Albrecht Wendel, Gisa Tiegs, and Christoph Werner

Chapter 4
Compartmentation of Cellular Glutathione in Mitochondrial and Cytosolic Pools 29
Francisco J. Romero and Dimitrios Galaris

Chapter 5
Hormonal Influence of GSH Content in Isolated Hepatocytes 39
F. Goethals, V. Thybaud, D. Delmulle, and M. Roberfroid

Chapter 6
Glutathione Transport and Its Significance in Oxidative Stress 45
Theo Akerboom and Helmut Sies

Chapter 7
Glutathione and Alcohol ... 57
Luis A. Videla and Consuelo Guerri

Chapter 8
Glutathione and Prokaryotes .. 69
Gerald L. Newton and Robert C. Fahey

Chapter 9
Biosynthesis and Regulation of γ-Glutamyl Transpeptidase 79
Y. Laperche, G. Guellaën, R. Barouki, and J. Hanoune

Chapter 10
The Role of γ-Glutamyl Transpeptidase (γGTPase) in Mammary Tissue 93
Darryl L. Hadsell, C. R. Baumrucker, and P. G. Campbell

Chapter 11
Structure, Mechanism, Functions, and Regulatory Properties of Glutathione Reductase ... 105
J. López-Barea, J. A. Bárcena, J. A. Bocanegra, J. Florindo, C. García-Alfonso,
A. López-Ruiz, E. Martínez-Galisteo, and J. Peinado

Chapter 12
Glutathione Transferase in Human Tumors and Human Cancer Cell Lines 117
Carmine Di Ilio and Giorgio Federici
Chapter 13
The Formation of Disulfide Bonds in the Synthesis of Secretory Proteins: Properties and Role of Protein Disulfide-Isomerase ..125
Robert B. Freedman

Chapter 14
The Glyoxalase System: Towards Functional Characterization and a Role in Disease Processes ...135
Paul J. Thornalley

Chapter 15
Glutaredoxin: Structure and Function ...145
Arne Holmgren

Chapter 16
Glutathione and Protein Function ..155
Ian A. Cotgreave, Marianne Weis, Luigi Atzori, and Peter Moldéus

Chapter 17
Role of Glutathione in the Regulation of Protein Synthesis and Degradation in Eukaryotes ...177
Jose M. Estrela and Federico V. Pallardo

Chapter 18
Aging and Increased Oxidation of the Sulfur Pool187
Jaime Miquel and Hans Weber

Chapter 19
Glutathione Metabolism in the Mammalian Ocular Lens193
William B. Rathbun

Chapter 20
Role of Glutathione in the Aging Process of the Lens207
Otto Hockwin and Inge Korte

Chapter 21
Renal Handling of Glutathione ...217
Norman P. Curthoys

Chapter 22
Glutathione in Ischemia and Reperfusion-Induced Tissue Injury227
Russell C. Scaduto Jr.

Chapter 23
Free Radicals and Thiol Compounds (The Role of Glutathione Against Free Radical Toxicity) ...237
Guillermo T. Sáez, William H. Bannister, and Joseph V. Bannister

Chapter 24
N-Acetylcysteine Stereoisomers as In Vivo Probes of the Role of Glutathione in Drug Detoxification ..255
Bradley K. Wong and George B. Corcoran
Chapter 25
Glutathione Levels in Human Hepatocytes Exposed to Paracetamol.........................263
José V. Castell, Amparo Larrauri, Teresa Donato, and María J. Gómez-Lechón

Chapter 26
Biological Implications of the Nucleophilic Addition of Glutathione to
Quinoid Compounds...279
Anders Brunmark and Enrique Cadenas

Chapter 27
Glutathione and Hepatobiliary Transport of Xenobiotics ..295
J. Gonzalez and A. Esteller

Chapter 28
The Role of Glutathione in the Enzymatic Deiodination of Thyroid Hormone..........317
Theo J. Visser

Chapter 29
Glutathione in Pineal Mechanisms and Functions ...335
W. Q. Quay

Chapter 30
Nutritional Significance of Glutathione...341
Noriko Tateishi

Chapter 31
The Potential Benefits of Dietary Glutathione on Immune Function and
Other Practical Implications...351
Tadayasu Furukawa, Simin N. Meydani, and Jeffrey B. Blumberg

Chapter 32
Hereditary Disorders in Glutathione Metabolism ...359
Agne Larsson

Index ..367
Chapter 1

PUBLICATIONS ON GLUTATHIONE, 1983 TO 1987. A BIBLIOMETRIC STUDY

M. L. Terrada and M. L. Muñoz

Publications on glutathione are disseminated within the international scientific community which uses the English language as lingua franca through bibliographic databases and indices, two of which are exclusively biomedical: the American Index Medicus/MEDLARS and the Dutch Excerpta Medica/EMBASE. From 1983 to 1987, these two databases and the French PASCAL indexed a similar number of publications on the subject (Table 1).

In order to know the structure of this literature on glutathione, we turn to the Index Medicus/MEDLARS mainly due to the precise semantic specification of contents as provided by its thesaurus which is referred to as Medical Subject Headings.

Foremost, we should insist once again that the area covered by the Index Medicus/MEDLARS does not, as in the case of the rest of Western bibliographical databases, correspond in a balanced way to the international distribution of biomedical publications. In general terms, it should be remembered that (1) the Index Medicus/MEDLARS presents a marked bias in favor of English-speaking countries, particularly the U.S., (2) it satisfactorily reports on production from West Germany, the Netherlands, and the Scandinavian countries, but considerably less so in the case of Latin Europe and above all, the East Block countries, and (3) it is of very little use for Soviet and Japanese production.1,2 In spite of these limitations, its contents undoubtedly reflect the biomedical literature disseminated within the international scientific community which uses the English language as lingua franca.

The annual distribution of indexed publications on glutathione, according to this database for the mentioned 1983 to 1987 period, is as follows (Table 2).

It should be mentioned that the relatively low number of publications corresponding to 1987 is a result of the delay with which certain journals appear or are indexed.

The great majority of these publications are articles (2731 = 99.7%) that appeared in 508 journals (Table 3).

This distribution fits Bradford’s law of scattering,3,4 whereby “if scientific journals are arranged in order of decreasing productivity of articles on a given subject, they may be divided into a nucleus of periodicals more particularly devoted to the subject, and several groups or zones containing the same number of articles as the nucleus, when the number of periodicals in the nucleus and succeeding zones is 1:n:n^2 . . .” (Table 4).

According to this table, the Bradford nucleus consists of a single journal (the American Biochemical Pharmacology), the second zone has three journals (the American Journal of Biological Chemistry, Applied Pharmacology, and Biochemical and Biophysical Research Communications), and so on. The distribution according to countries for those journals included in the first seven zones is as follows (Table 5).

On the other hand, it is worth knowing the distribution of articles on glutathione according to country of origin. This information is supplied in 2522 cases, i.e., 92.07% of all articles indexed in the Index Medicus/MEDLARS (Table 6).

As mentioned above, the bias of the coverage of Index Medicus/MEDLARS explains in part the high figure corresponding to the U.S., the low figure for the Soviet Union, and the absence of countries such as China. In this sense, the fact that Japan holds second place is of considerable significance. The same distribution with countries grouped in terms of geographical area is given below (Table 7).
TABLE 1
Number of Publications on Glutathione Indexed from 1983 to 1987

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excerpta Medica/EMBASE</td>
<td>2307</td>
</tr>
<tr>
<td>Index Medicus/MEDLARS</td>
<td>2739</td>
</tr>
<tr>
<td>PASCAL</td>
<td>2225</td>
</tr>
</tbody>
</table>

TABLE 2
Annual Distribution of Publications

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Publications</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>453</td>
<td>16.53</td>
</tr>
<tr>
<td>1984</td>
<td>560</td>
<td>20.44</td>
</tr>
<tr>
<td>1985</td>
<td>559</td>
<td>20.40</td>
</tr>
<tr>
<td>1986</td>
<td>661</td>
<td>24.13</td>
</tr>
<tr>
<td>1987</td>
<td>506</td>
<td>18.47</td>
</tr>
<tr>
<td>Total</td>
<td>2739</td>
<td></td>
</tr>
</tbody>
</table>

Almost half of this literature comes from 54 institutions with 10 or more publications each (Table 8).

These 54 institutions belong in turn to 12 countries (Table 9).

The 2739 publications on glutathione indexed by the Index Medicus/MEDLARS corresponded to 5528 authors. Their distribution fit \(r = 0.9817 \) Lotka's productivity law, whereby regardless of the scientific discipline involved the number of authors of \(n \) publications is inversely proportional to \(n^2 \) (Table 10).

According to Lotka's law, the productivity index of an author is the logarithm of the number of his/her publications. Thus, in terms of this index, we can group the authors of literature on glutathione into three productivity levels (Table 11).

Through the classical studies by Price, it is known that this productivity index is not correlated to the Platz visibility index (logarithm of the number of personal citations in the scientific community). This can also be seen in the case of the 43 large producers of publications on glutathione by noting the number of citations they have received during the period from 1974 to 1987 according to SCISEARCH (Table 12).

The sole consequence deduced from this comparison is that all large-productivity authors of publications about glutathione are cited by the international scientific community according to three visibility levels (Table 13).

Finally, we will mention the distribution of publications on glutathione according to the number of authors (Table 14). The mode of this distribution (3) and mean authors per publication (3.26) are indicators that the study of a scientific subject is strongly institutionalized.
TABLE 3
Distribution According to Journals

<table>
<thead>
<tr>
<th>Journals</th>
<th>Number of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Pharmacology</td>
<td>205</td>
</tr>
<tr>
<td>Journal of Biological Chemistry</td>
<td>97</td>
</tr>
<tr>
<td>Toxicology and Applied Pharmacology</td>
<td>82</td>
</tr>
<tr>
<td>Biochemical and Biophysical Research Communications</td>
<td>72</td>
</tr>
<tr>
<td>Biochimica et Biophysica Acta</td>
<td>71</td>
</tr>
<tr>
<td>Cancer Research</td>
<td>69</td>
</tr>
<tr>
<td>Chemical and Biological Interactions</td>
<td>51</td>
</tr>
<tr>
<td>Journal of Pharmacology and Experimental Therapeutics</td>
<td>49</td>
</tr>
<tr>
<td>Carcinogenesis</td>
<td>44</td>
</tr>
<tr>
<td>Archives of Biochemistry and Biophysics</td>
<td>42</td>
</tr>
<tr>
<td>Drug Metabolism and Disposition</td>
<td>41</td>
</tr>
<tr>
<td>Biochemical Journal</td>
<td>39</td>
</tr>
<tr>
<td>Toxicology Letters</td>
<td>39</td>
</tr>
<tr>
<td>International Journal of Radiation Oncology, Biology, and Physiology</td>
<td>38</td>
</tr>
<tr>
<td>Comparative Biochemistry and Physiology</td>
<td>37</td>
</tr>
<tr>
<td>Toxicology</td>
<td>37</td>
</tr>
<tr>
<td>International Journal of Radiation Biology</td>
<td>32</td>
</tr>
<tr>
<td>Research Communications in Chemical Pathology and Pharmacology</td>
<td>32</td>
</tr>
<tr>
<td>Archives of Toxicology</td>
<td>30</td>
</tr>
<tr>
<td>FEBS Letters</td>
<td>26</td>
</tr>
<tr>
<td>Mutation Research</td>
<td>24</td>
</tr>
<tr>
<td>Current Eye Research</td>
<td>23</td>
</tr>
<tr>
<td>European Journal of Biochemistry</td>
<td>23</td>
</tr>
<tr>
<td>Journal of Toxicology and Environmental Health</td>
<td>23</td>
</tr>
<tr>
<td>Experimental Eye Research</td>
<td>22</td>
</tr>
<tr>
<td>Advances in Experimental Medicine and Biology</td>
<td>21</td>
</tr>
<tr>
<td>Journal of Clinical Investigation</td>
<td>21</td>
</tr>
<tr>
<td>Molecular Pharmacology</td>
<td>21</td>
</tr>
<tr>
<td>Xenobiotica</td>
<td>21</td>
</tr>
<tr>
<td>American Journal of Physiology</td>
<td>20</td>
</tr>
<tr>
<td>Fundamentals in Applied Toxicology</td>
<td>19</td>
</tr>
<tr>
<td>Methods in Enzymology</td>
<td>19</td>
</tr>
<tr>
<td>Analytical Biochemistry</td>
<td>18</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>18</td>
</tr>
<tr>
<td>Proceedings of the National Academy of Sciences of the U.S.A.</td>
<td>18</td>
</tr>
<tr>
<td>Radiation Research</td>
<td>18</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>17</td>
</tr>
<tr>
<td>Cancer Letters</td>
<td>16</td>
</tr>
<tr>
<td>Experientia</td>
<td>16</td>
</tr>
<tr>
<td>Journal Applied Toxicology</td>
<td>16</td>
</tr>
<tr>
<td>Mechanisms of Ageing and Development</td>
<td>16</td>
</tr>
<tr>
<td>Proceedings of Clinical Biological Research</td>
<td>16</td>
</tr>
<tr>
<td>Acta Pharmacologica et Toxicologica</td>
<td>14</td>
</tr>
<tr>
<td>Blood</td>
<td>14</td>
</tr>
<tr>
<td>Journal of Inorganic Biochemistry</td>
<td>13</td>
</tr>
<tr>
<td>Journal of Nutrition</td>
<td>13</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>12</td>
</tr>
<tr>
<td>Journal of Chromatography</td>
<td>12</td>
</tr>
<tr>
<td>British Journal of Cancer</td>
<td>11</td>
</tr>
<tr>
<td>Bulletin of Environmental Contamination and Toxicology</td>
<td>11</td>
</tr>
<tr>
<td>Drug Chemistry and Toxicology</td>
<td>11</td>
</tr>
<tr>
<td>Journal of Bacteriology</td>
<td>11</td>
</tr>
<tr>
<td>Biomedica Biochimica Acta</td>
<td>10</td>
</tr>
<tr>
<td>British Journal of Radiology</td>
<td>10</td>
</tr>
<tr>
<td>Diabetes</td>
<td>10</td>
</tr>
<tr>
<td>International Journal of Biochemistry</td>
<td>10</td>
</tr>
</tbody>
</table>
TABLE 3 (continued)
Distribution According to Journals

<table>
<thead>
<tr>
<th>Journals</th>
<th>Number of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostaglandins</td>
<td></td>
</tr>
<tr>
<td>6 journals with</td>
<td>9 articles each</td>
</tr>
<tr>
<td>10 journals with</td>
<td>8 articles each</td>
</tr>
<tr>
<td>7 journals with</td>
<td>7 articles each</td>
</tr>
<tr>
<td>20 journals with</td>
<td>6 articles each</td>
</tr>
<tr>
<td>13 journals with</td>
<td>5 articles each</td>
</tr>
<tr>
<td>26 journals with</td>
<td>4 articles each</td>
</tr>
<tr>
<td>39 journals with</td>
<td>3 articles each</td>
</tr>
<tr>
<td>81 journals with</td>
<td>2 articles each</td>
</tr>
<tr>
<td>249 journals with</td>
<td>1 article each</td>
</tr>
</tbody>
</table>

Total 2731

TABLE 4
Distribution of Journals According to Bradford Zones

<table>
<thead>
<tr>
<th>Zones</th>
<th>Number of articles</th>
<th>Number of journals</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>251</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>240</td>
<td>4</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>256</td>
<td>8</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>233</td>
<td>11</td>
<td>1.37</td>
</tr>
<tr>
<td>7</td>
<td>247</td>
<td>16</td>
<td>1.45</td>
</tr>
<tr>
<td>8</td>
<td>277</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>289</td>
<td>59</td>
<td>1.84</td>
</tr>
<tr>
<td>10</td>
<td>279</td>
<td>120</td>
<td>2.03</td>
</tr>
<tr>
<td>11</td>
<td>249</td>
<td>249</td>
<td>2.07</td>
</tr>
</tbody>
</table>

\[\bar{x} = 248.27 \pm 26.19 \quad 1.79 \pm 0.50 \]

TABLE 5
Distribution According to Countries of the Journals Included in the First Seven Bradford Distribution Zones

<table>
<thead>
<tr>
<th>Zones</th>
<th>U.S.</th>
<th>U.K.</th>
<th>Netherlands</th>
<th>West Germany</th>
<th>Denmark</th>
<th>Switzerland</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>3</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

Total 32 7 5 3 1 1 49
<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of publications</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1234</td>
<td>48.93</td>
</tr>
<tr>
<td>Japan</td>
<td>180</td>
<td>7.14</td>
</tr>
<tr>
<td>U.K.</td>
<td>176</td>
<td>6.98</td>
</tr>
<tr>
<td>West Germany</td>
<td>154</td>
<td>6.11</td>
</tr>
<tr>
<td>Italy</td>
<td>128</td>
<td>5.06</td>
</tr>
<tr>
<td>Sweden</td>
<td>123</td>
<td>4.88</td>
</tr>
<tr>
<td>Canada</td>
<td>81</td>
<td>3.21</td>
</tr>
<tr>
<td>France</td>
<td>58</td>
<td>2.30</td>
</tr>
<tr>
<td>Netherlands</td>
<td>55</td>
<td>2.18</td>
</tr>
<tr>
<td>Australia</td>
<td>43</td>
<td>1.70</td>
</tr>
<tr>
<td>India</td>
<td>41</td>
<td>1.62</td>
</tr>
<tr>
<td>Spain</td>
<td>21</td>
<td>0.83</td>
</tr>
<tr>
<td>Finland</td>
<td>19</td>
<td>0.75</td>
</tr>
<tr>
<td>Israel</td>
<td>19</td>
<td>0.75</td>
</tr>
<tr>
<td>Norway</td>
<td>19</td>
<td>0.75</td>
</tr>
<tr>
<td>East Germany</td>
<td>17</td>
<td>0.67</td>
</tr>
<tr>
<td>Belgium</td>
<td>16</td>
<td>0.63</td>
</tr>
<tr>
<td>Chile</td>
<td>16</td>
<td>0.63</td>
</tr>
<tr>
<td>Hungary</td>
<td>16</td>
<td>0.63</td>
</tr>
<tr>
<td>Poland</td>
<td>13</td>
<td>0.52</td>
</tr>
<tr>
<td>Argentina</td>
<td>12</td>
<td>0.48</td>
</tr>
<tr>
<td>New Zealand</td>
<td>12</td>
<td>0.48</td>
</tr>
<tr>
<td>Switzerland</td>
<td>12</td>
<td>0.48</td>
</tr>
<tr>
<td>Turkey</td>
<td>9</td>
<td>0.36</td>
</tr>
<tr>
<td>Mexico</td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td>Nigeria</td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td>Austria</td>
<td>5</td>
<td>0.20</td>
</tr>
<tr>
<td>Czechoslovakia</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>Jamaica</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>Denmark</td>
<td>3</td>
<td>0.12</td>
</tr>
<tr>
<td>Jordan</td>
<td>3</td>
<td>0.12</td>
</tr>
<tr>
<td>Brazil</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Soviet Union</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Egypt</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Iraq</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Kenya</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Libya</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Total 2522
TABLE 7
Distribution of Publications According to Geographical Areas of Origin

<table>
<thead>
<tr>
<th>Geographical areas</th>
<th>Number of publications</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1234</td>
<td>48.93</td>
</tr>
<tr>
<td>Other American English-speaking countries</td>
<td>85</td>
<td>3.37</td>
</tr>
<tr>
<td>Latin America</td>
<td>37</td>
<td>1.47</td>
</tr>
<tr>
<td>Western Europe</td>
<td>798</td>
<td>31.64</td>
</tr>
<tr>
<td>Soviet Union</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>54</td>
<td>2.14</td>
</tr>
<tr>
<td>Japan</td>
<td>180</td>
<td>7.14</td>
</tr>
<tr>
<td>Other Eastern Asiatic countries</td>
<td>44</td>
<td>1.74</td>
</tr>
<tr>
<td>Arabic countries</td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td>Israel</td>
<td>19</td>
<td>0.75</td>
</tr>
<tr>
<td>Black Africa</td>
<td>7</td>
<td>0.27</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Australia and New Zealand</td>
<td>55</td>
<td>2.18</td>
</tr>
<tr>
<td>Total</td>
<td>2522</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8
Institutions with Ten or More Publications

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
<th>Number of publications</th>
<th>Percentage</th>
<th>Cumulative percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karolinska Institute</td>
<td>Sweden</td>
<td>80</td>
<td>3.17</td>
<td>3.17</td>
</tr>
<tr>
<td>University of California</td>
<td>U.S.</td>
<td>75</td>
<td>2.97</td>
<td>6.14</td>
</tr>
<tr>
<td>University of Texas</td>
<td>U.S.</td>
<td>63</td>
<td>2.50</td>
<td>8.64</td>
</tr>
<tr>
<td>National Cancer Institute</td>
<td>U.S.</td>
<td>47</td>
<td>1.86</td>
<td>10.50</td>
</tr>
<tr>
<td>North Carolina Research Triangle Institute</td>
<td>U.S.</td>
<td>43</td>
<td>1.70</td>
<td>12.20</td>
</tr>
<tr>
<td>University of Duesseldorf</td>
<td>West Germany</td>
<td>34</td>
<td>1.35</td>
<td>13.55</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>U.S.</td>
<td>33</td>
<td>1.31</td>
<td>14.86</td>
</tr>
<tr>
<td>Veterans Administration Medical Center</td>
<td>U.S.</td>
<td>33</td>
<td>1.31</td>
<td>16.17</td>
</tr>
<tr>
<td>University of Luebeck</td>
<td>West Germany</td>
<td>30</td>
<td>1.12</td>
<td>17.29</td>
</tr>
<tr>
<td>Institut National de la Santé et de la Recherche Médicale</td>
<td>France</td>
<td>27</td>
<td>1.07</td>
<td>18.36</td>
</tr>
<tr>
<td>Cornell University Medical College</td>
<td>U.S.</td>
<td>25</td>
<td>0.99</td>
<td>19.35</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>U.S.</td>
<td>23</td>
<td>0.91</td>
<td>20.26</td>
</tr>
<tr>
<td>University of Rochester</td>
<td>U.S.</td>
<td>23</td>
<td>0.91</td>
<td>21.17</td>
</tr>
<tr>
<td>John Hopkins University</td>
<td>U.S.</td>
<td>22</td>
<td>0.87</td>
<td>22.04</td>
</tr>
<tr>
<td>Baylor College of Medicine</td>
<td>U.S.</td>
<td>21</td>
<td>0.83</td>
<td>22.87</td>
</tr>
<tr>
<td>University of Nebraska</td>
<td>U.S.</td>
<td>21</td>
<td>0.83</td>
<td>23.70</td>
</tr>
<tr>
<td>University of Tuebingen</td>
<td>West Germany</td>
<td>18</td>
<td>0.71</td>
<td>24.41</td>
</tr>
<tr>
<td>Vanderbilt University</td>
<td>U.S.</td>
<td>18</td>
<td>0.71</td>
<td>25.12</td>
</tr>
<tr>
<td>Columbia University</td>
<td>U.S.</td>
<td>17</td>
<td>0.67</td>
<td>25.79</td>
</tr>
<tr>
<td>Medical Research Center</td>
<td>U.K.</td>
<td>17</td>
<td>0.67</td>
<td>26.46</td>
</tr>
<tr>
<td>Emory University</td>
<td>U.S.</td>
<td>16</td>
<td>0.63</td>
<td>27.09</td>
</tr>
<tr>
<td>Mount Vernon Hospital</td>
<td>U.S.</td>
<td>16</td>
<td>0.63</td>
<td>27.72</td>
</tr>
<tr>
<td>State University of New York</td>
<td>U.S.</td>
<td>16</td>
<td>0.63</td>
<td>28.35</td>
</tr>
<tr>
<td>University of Santiago</td>
<td>Chile</td>
<td>16</td>
<td>0.63</td>
<td>28.98</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>U.S.</td>
<td>16</td>
<td>0.63</td>
<td>29.61</td>
</tr>
<tr>
<td>University of Turin</td>
<td>Italy</td>
<td>16</td>
<td>0.63</td>
<td>30.24</td>
</tr>
<tr>
<td>Industrial Toxicology Research Center</td>
<td>India</td>
<td>15</td>
<td>0.59</td>
<td>30.83</td>
</tr>
</tbody>
</table>
TABLE 8 (continued)
Institutions with Ten or More Publications

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
<th>Number of publications</th>
<th>Percentage</th>
<th>Cumulative percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Heart, Lung, and Blood Institute</td>
<td>U.S.</td>
<td>15</td>
<td>0.59</td>
<td>31.42</td>
</tr>
<tr>
<td>Oakland University</td>
<td>U.S.</td>
<td>15</td>
<td>0.59</td>
<td>32.01</td>
</tr>
<tr>
<td>Duke University Medical Center</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>32.57</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>33.13</td>
</tr>
<tr>
<td>Rockefeller University</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>33.69</td>
</tr>
<tr>
<td>University of Florida</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>34.25</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>34.81</td>
</tr>
<tr>
<td>University of Kansas Medical Center</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>35.37</td>
</tr>
<tr>
<td>University of Toronto</td>
<td>Canada</td>
<td>14</td>
<td>0.56</td>
<td>36.93</td>
</tr>
<tr>
<td>Wadsworth Veterans Administration Medical Center</td>
<td>U.S.</td>
<td>14</td>
<td>0.56</td>
<td>37.49</td>
</tr>
<tr>
<td>Kyoto University</td>
<td>Japan</td>
<td>13</td>
<td>0.52</td>
<td>38.01</td>
</tr>
<tr>
<td>University of Genova</td>
<td>Italy</td>
<td>13</td>
<td>0.52</td>
<td>38.53</td>
</tr>
<tr>
<td>University of Stockholm</td>
<td>Sweden</td>
<td>13</td>
<td>0.52</td>
<td>39.05</td>
</tr>
<tr>
<td>University of Washington</td>
<td>U.S.</td>
<td>13</td>
<td>0.52</td>
<td>39.56</td>
</tr>
<tr>
<td>National Center for Toxic Research</td>
<td>U.S.</td>
<td>12</td>
<td>0.48</td>
<td>40.05</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>U.S.</td>
<td>12</td>
<td>0.48</td>
<td>40.53</td>
</tr>
<tr>
<td>University of Leiden</td>
<td>Netherlands</td>
<td>12</td>
<td>0.48</td>
<td>41.01</td>
</tr>
<tr>
<td>University of London</td>
<td>U.K.</td>
<td>12</td>
<td>0.48</td>
<td>41.49</td>
</tr>
<tr>
<td>Washington State University</td>
<td>U.S.</td>
<td>12</td>
<td>0.48</td>
<td>41.97</td>
</tr>
<tr>
<td>Harvard Medical School</td>
<td>U.S.</td>
<td>11</td>
<td>0.44</td>
<td>42.41</td>
</tr>
<tr>
<td>University of Louisville</td>
<td>U.S.</td>
<td>11</td>
<td>0.44</td>
<td>42.85</td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td>U.S.</td>
<td>11</td>
<td>0.44</td>
<td>43.29</td>
</tr>
<tr>
<td>University of Sidney</td>
<td>Australia</td>
<td>11</td>
<td>0.44</td>
<td>43.73</td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>U.S.</td>
<td>10</td>
<td>0.40</td>
<td>44.13</td>
</tr>
<tr>
<td>Mount Sinai School of Medicine</td>
<td>U.S.</td>
<td>10</td>
<td>0.40</td>
<td>44.53</td>
</tr>
<tr>
<td>Tokyo College of Pharmacy</td>
<td>Japan</td>
<td>10</td>
<td>0.40</td>
<td>44.93</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>U.S.</td>
<td>10</td>
<td>0.40</td>
<td>45.33</td>
</tr>
</tbody>
</table>

Total: 1119

Note: Percentage of the total number of publications (2522) where the country of origin is indicated.
TABLE 9

Distribution According to Country of Origin of the Institutions with Ten or More Publications

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of institutions</th>
<th>Number of publications</th>
<th>Percentage of publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>37</td>
<td>768</td>
<td>30.45</td>
</tr>
<tr>
<td>West Germany</td>
<td>3</td>
<td>82</td>
<td>3.25</td>
</tr>
<tr>
<td>Italy</td>
<td>29</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
<td>23</td>
<td>0.92</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>93</td>
<td>3.69</td>
</tr>
<tr>
<td>U.K.</td>
<td>2</td>
<td>29</td>
<td>1.15</td>
</tr>
<tr>
<td>Australia</td>
<td>1</td>
<td>11</td>
<td>0.44</td>
</tr>
<tr>
<td>Canada</td>
<td>1</td>
<td>14</td>
<td>0.56</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>16</td>
<td>0.64</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
<td>27</td>
<td>1.07</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>15</td>
<td>0.64</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
<td>12</td>
<td>0.48</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>1119</td>
<td></td>
</tr>
</tbody>
</table>

Note: Percentage of the total number of publications (2522) where country of origin is indicated.

TABLE 10

Distribution of Publications According to Authors

<table>
<thead>
<tr>
<th>Number of articles</th>
<th>Number of authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4096</td>
</tr>
<tr>
<td>2</td>
<td>747</td>
</tr>
<tr>
<td>3</td>
<td>314</td>
</tr>
<tr>
<td>4</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5528</td>
</tr>
</tbody>
</table>
TABLE 11
Distribution of Authors According to Productivity Level

<table>
<thead>
<tr>
<th>Productivity level</th>
<th>Productivity index (p)</th>
<th>Number of authors</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large producers</td>
<td>$p > 1$</td>
<td>43</td>
<td>0.78</td>
</tr>
<tr>
<td>Medium producers</td>
<td>$1 > p > 0$</td>
<td>1389</td>
<td>25.13</td>
</tr>
<tr>
<td>Low producers</td>
<td>0</td>
<td>4096</td>
<td>74.09</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5528</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 12
Comparison of the Productivity and Visibility Indices of the Large Producers

<table>
<thead>
<tr>
<th>Number of publications on glutathione (MEDLARS)</th>
<th>Productivity index</th>
<th>Number of citations (SCI-SEARCH)</th>
<th>Visibility index</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>1.53</td>
<td>1038</td>
<td>3.02</td>
</tr>
<tr>
<td>32</td>
<td>1.50</td>
<td>852</td>
<td>2.93</td>
</tr>
<tr>
<td>31</td>
<td>1.49</td>
<td>2661</td>
<td>3.42</td>
</tr>
<tr>
<td>29</td>
<td>1.46</td>
<td>646</td>
<td>2.81</td>
</tr>
</tbody>
</table>

TABLE 13
Distribution of Large Producers According to Visibility Level

<table>
<thead>
<tr>
<th>Visibility level</th>
<th>Visibility index (p)</th>
<th>Number of authors</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great visibility</td>
<td>$p > 3$</td>
<td>4</td>
<td>9.30</td>
</tr>
<tr>
<td>Medium visibility</td>
<td>$3 > p > 2$</td>
<td>32</td>
<td>74.42</td>
</tr>
<tr>
<td>Small visibility</td>
<td>$2 > p > 1$</td>
<td>7</td>
<td>16.28</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 14
Distribution of Publication According to the Number of Authors

<table>
<thead>
<tr>
<th>Number of authors (n)</th>
<th>Number of publications with (n) authors</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230</td>
<td>8.39</td>
</tr>
<tr>
<td>2</td>
<td>726</td>
<td>26.50</td>
</tr>
<tr>
<td>3</td>
<td>780</td>
<td>28.47</td>
</tr>
<tr>
<td>4</td>
<td>488</td>
<td>17.81</td>
</tr>
<tr>
<td>5</td>
<td>279</td>
<td>10.18</td>
</tr>
<tr>
<td>6</td>
<td>164</td>
<td>5.98</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>1.49</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.18</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2739</td>
</tr>
</tbody>
</table>
REFERENCES

Determination of Tissue Glutathione

Manipulation of Liver Glutathione Status: A Double-Edged Sword

Droper, P. H., Polensek, L., Hadley, M., and Hiran, K., Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues, Lipids, 19, 836, 1984.

Compartmentation of Cellular Glutathione in Mitochondrial and Cytosolic Pools

Meredith, M. J. and Reed, D. J., Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-l-nitrosourea (BCNU), Biochem. Pharmacol., 32, 1383, 1983.

Hormonal Influence of GSH Content in Isolated Hepatocytes

Glutathione Transport and its Significance in Oxidative Stress

Akerboom, T. P. M., Bilzer, M., and Sies, H., Competition between transport of glutathione disulfide (GSSG) and glutathione-S-conjugates from perfused rat liver into bile, FEBS Lett., 140, 73 1982.

Inoue, M., Shinozuka, S., and Morino, Y., Mechanism of renal peritubular extraction of plasma glutathione. The catalytic activity of contraluminal gamma-glutamyltransferase is prerequisite to the apparent peritubular extraction of plasma glutathione, Eur. J. Biochem., 157, 605, 1986.

Glutathione and Alcohol

Bidder, T. G. and Jaeger, P. D., Malondialdehyde production by erythrocytes from alcoholic and nonalcoholic subjects, Life Sci., 30, 1021, 1982.

Glutathione in Prokaryotes

Biosynthesis and Regulation of \(\text{\textdegree\textdegree} \)-Glutamyl Transpeptidase

Goldberg, D. M. and Martin, J. V., Role of \(\text{\textdegree\textdegree} \)-glutamyl transpeptidase activity in the diagnosis of hepatic disease, Digestion, 12, 232, 1975.

Inoue, M., Shinozuka, S., and Morino, Y., Mechanism of renal peritubular extraction of plasma glutathione. The catalytic activity of contralumenal \(\text{\textdegree\textdegree} \)-glutamyltransferase is prerequisite to the apparent peritubular extraction of plasma glutathione, Eur. J. Biochem., 157, 605, 1986.

Hughey, R. P. and Curthoys, N. P., Comparison of the size and physical properties of γ-glutamyl transpeptidase purified from rat kidney following solubilization with papain or with triton X 100, J. Biol. Chem., 251, 7863, 1976.

The Role of Glutamyl Transpeptidase (GTPase) in Mammary Tissue

Structure, Mechanism, Functions, and Regulatory Properties of Glutathione Reductase

Huber, P. W. and Brandt, K. G., Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase, Biochemistry, 19, 4568, 1980.

Glutathione Transferase in Human Tumors and Human Cancer Cell Lines

Robertson, I. G. C., Guthenberg, C., Mannervik, B., and Jernstrom, B., Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the conjugation of glutathione with 7-[β-dihydroxy-9a,10a-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene, Cancer Res., 46, 2220, 1986.

The Formation of Disulfide Bonds in the Synthesis of Secretory Proteins: Properties and Role of Protein Disulfide-Isomerase

The Glyoxalase System: Towards Functional Characterization and a Role in Disease Processes

Larsen, K., Aronsson, A. C., Marmstal, E., and Mannervik, B., Immunological comparison of glyoxalase I from yeast and mammals and quantitative determination of the enzyme in human tissues by
Principato, G. B., personal communication.

Marmstal, E., Aronsson, A.-C., and Mannervik, B., Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources, Biochem. J., 183, 23, 1979.

Kavathas, P. and DeMars, R., A new variant glyoxalase I allele that is readily detectable in stimulated lymphocytes and lymphoblastoid cell lines but not in circulating lymphocytes or erythrocytes, Am. J. Hum. Genet., 33, 935, 1981.

Mondon, C., αKetoaldehyde dehydrogenase, an enzyme that catalyses the enzymic oxidation of methylglyoxal to pyruvate, J. Biol. Chem., 242, 4603, 1967.

Hooper, N. I. and Thornalley, P. J., The potentiation of cell-free and cellular microtubule assembly by S-d-lactoylglutathione, manuscript in preparation.

Glutaredoxin: Structure and Function

Björkberg, O. and Holmgren, A., Production of gram amounts of E. coli glutaredoxin and isolation of an elongated form with full activity, J. Biol. Chem., submitted.

Glutathione and Protein Function

1981.

regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by

Tschesche, H. and Macartney, H. W., A new principle of regulation of enzymic activity. Activation and

Offermann, M. K., McKay, M. J., Marsh, M. W., and Bond, J., Glutathione disulfide inactivates, destabilizes

and glutathione debranching enzyme (amylo-l,6-glucosidase/4-□□-

 equilibrium between glutathione and glycogen debranching enzyme (amylo-l,6-glucosidase/4-□□-

Van Berkel, T. J. C., Koster, J. F., Holm, W. C., Two interconvertible forms of l-type pyruvate kinase

Bjelland, S., Wallevik, K., Kroll, J., Dixon, J. E., Morin, J. E., Freedman, R. B., Lambert, N., Vanaadani, P.,

Jagus, R. and Safer, B., Activity of eukaryotic initiation factor 2 is modified by processes distinct from

Anfinsen, C. B., Haber, E., Sela, M., and White, F. H., The kinetics of formation of native ribonuclease

Konishi, Y., Ooi, T., and Scharaga, H. A., Regeneration of ribonuclease A from the reduced protein. Rate-

limiting steps, Biochemistry, 21, 4734, 1982.

Hillson, D. A., Lambert, N., and Freedman, R. B., Formation and isomerisation of disulfide bonds in proteins;

Bjelland, S., Wallevik, K., Kroll, J., Dixon, J. E., Morin, J. E., Freedman, R. B., Lambert, N., Vanaadani, P., T.,
and Nafz, M. A., Immunological identity between bovine preparations of thiol protein disulfide, oxido

Burchell, A. and Burchell, B., Stabilization of partially purified glucose-6-phosphatase by fluoride. Is enzyme

Van Berkel, T. J. C., Koster, J. F., and HIlßmann, W. C., Two interconvertible forms of l-type pyruvate kinase

 equilibrium between glutathione and glycogen debranching enzyme (amylo-l,6-gluco side/4-□□-

Offermann, M. K., McKay, M. J., Marsh, M. W., and Bond, J., Glutathione disulfide inactivates, destabilizes

Tschesche, H. and Macartney, H. W., A new principle of regulation of enzymic activity. Activation and
regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by

Chappel, C. I., Dresden, M. H., and Walters, J. W., Glutathione activation of a cysteine proteinase from

Mukherjee, S. P. and Lynn, W. S. , Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Possible role in the hormones effect on adenylate cyclase and the hexose monophosphate shunt, Arch. Biochem. Biophys., 184, 69, 1977.

Role of Glutathione in the Regulation of Protein Synthesis and Degradation in Eukaryotes

McAllister, H. C. and Schweet, R. S., Involvement of sulfhydryl groups in the binding of tRNA to reticulocyte ribosomes, J. Mol. Biol., 34, 519, 1968.

Goethals, F., Krack, G., Deboyser, D., and Roberfroid, M., Effects of diethyl malate on protein synthesis in isolated hepatocytes, Toxicology, 26, 47, 1983.

Aging and Increased Oxidation of the Sulfur Pool

Ohrloff, O., Lange, G., and Hockwin, O., Postsynthetic changes of glutathione peroxidase (E.C. 1.11.1.9) and glutathione reductase (E.C. 1.6.4.2.) in the aging bovine lens, Mech. Ageing Dev., 14, 453, 1980.

Harman, D., Aging, a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298, 1956.

Glutathione Metabolism in the Mammalian Ocular Lens

Bellows, J. G., Cataract and Anomalies of the Lens, C. V. Mosby, St. Louis, 1944.

Reis, W., Ueber die cysteinreaktion der normalen und pathologische veränderten linsen, Arch. Ophthalmol., 80, 588, 1912; Die bestimmung der reifen des altersstars auf grund biochemischer reaktion der linse, Arch. Augenheilkd., 72, 156, 1912.

Barber, G. W., personal communication, 1979.

Rathbun, W. B., glutamylcysteine synthetase from bovine lens. II. Cysteine analogue studies, Arch. Biochem. Biophys., 122, 73, 1967.

Rathbun, W. B., Bovis, M. G., and Holleschau, A. M., Glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities in the rhesus monkey lens as a function of age, Curr. Eye Res., 5, 195,
1986.
Role of Glutathione in the Aging Process of the Lens

Beatty, P. W. and Reed, D. J., Involvement of the cystathione pathway in the biosynthesis of glutathione by isolated rat hepatocytes, Arch. Biochem. Biophys., 204, 80, 1980.
Korte, I., Hockwin, O., and Brass, M., Attempts to increase the glutathione content in the lens, in Modern Trends in Ageing Research, Vol. 147, INSERM-EURAGE, John Libbey Eurotext, London, 1986, 397.216
Renal Handling of Glutathione
Hughey, R. P. and Curthoys, N. P., Comparison of the size and physical properties of glutamyltranspeptidase purified from rat kidney following solubilization with papain or with Triton X-100, J. Biol. Chem., 251, 7863, 1976.
Allison, R. D. and Meister, A., Evidence that transpeptidation is a significant function of glutamyltranspeptidase, J. Biol. Chem., 256, 2988, 1981.
Glutathione in Ischemia and Reperfusion-Induced Tissue Injury

Gotoh, T. and Shikuma, K., Generation of superoxide radical during the autooxidation of oxyhemoglobin, J. Biochem. (Tokyo), 80, 397, 1976.

Free Radicals and Thiol Compounds: The Role of Glutathione Against Free Radical Toxicity

Gotoh, T. and Shikuma, K., Generation of superoxide radical during the autooxidation of oxyhemoglobin, J. Biochem. (Tokyo), 80, 397, 1976.

Oae, S., Takata, T., and Kim, Y. H., Reaction of organic sulfur compounds with superoxide anion. III. Oxidation of organic sulfur compounds to sulfinic and sulfonic acids, Tetrahedron, 37, 37, 1981.

Glatt, H. R., Billings, R., Platt, K. L., and Oesch, F., Improvement of the correlation of bacterial mutagenicity with carcinogenicity of benzo(a)pyrene and four of its major metabolites by activation with intact liver cells instead of cell homogenates, Cancer Res., 41, 270, 1981.

Elliot, H., Gianni, L., and Myers, C., Oxidative destruction of DNA by the adriamycin-iron complex, Biochemistry, 23, 928, 1984.

Brand, E. L. and Griffin, A. C., Reduction of toxicity of nitrogen mustard by cysteine, Cancer (Philadelphia), 4, 1030, 1951.

N-Acetylcysteine Stereoisomers as in vivo Probes of the Role of Glutathione in Drug Detoxification

Glutathione Levels in Human Hepatocytes Exposed to Paracetamol

Harman, A. W. and Selg, G., Comparison of the protective effects of N-acetylcysteine, 2-mercaptopropionylglycine and dithiothreitol against acetaminophen toxicity in mouse hepatocytes, Toxicology, 41, 83, 1986.
Biological Implications of the Nucleophilic Addition of Glutathione to Quinoid Compounds

Brunmark, A. and Cadenas, E., One-electron reduction of glutathionyl-naphthoquinones and rate of electron transfer to oxygen. A pulse radiolysis study, manuscript in preparation.

Glutathione and Hepatobiliary Transport of Xenobiotics

Takikawa, H. and Kaplowitz, N., Effects of GSH on ligand binding by the GSH transferases (GST) from rat liver, Gastroenterology, 92, 1786, 1987.
Jaeschke, H. and Wendel, A., Choleretic and increased biliary efflux of glutathione induced by phenolic antioxidants in rats, Toxicology, 52, 225, 1985.

Akerboom, T. P. M., Bilzer, M., and Sies, H., Competition between transport of glutathione disulphide (GSSG) and glutathione S-conjugates from perfused rat liver into bile, FEBS Lett., 140, 73, 1982.

Alexander, J. and Aaseth, J., Biliary excretion of copper and zinc in the rat as influenced by diethyl maleate, selenite and diethylthiocarbamate, Biochem. Pharmacol., 29, 2129, 1980.

The Role of Glutathione in the Enzymatic Deiodination of Thyroid Hormone

AufMKolk, M., Koehrle, J., Hesch, R. D., and Cody, V., Inhibition of rat liver iodothyronine deiodinase; interaction of aurones with the iodothyronine ligand-binding site, J. Biol. Chem., 261, 11623, 1986.

Visser, T. J., Kaptein, E., and Van Loon, M. A. C., Regulation of type I iodothyronine deiodinase (ID-I) of rat liver by glutathione, in Program of the 64th Meeting of the American Thyroid Association, San Francisco (Abstr. 136), 334.

Glutathione in Pineal Mechanisms and Functions

Pêbê, P., Ebels, I., Swaab, D. F., Mud, M. T., and Arimura, A., Presence of AVT-, BMSF-, LHRH-and somatostatin-like compounds in the rat pineal gland and their relationship with the UM05R pineal fraction, Cell
Namboodiri, M. A. A., Favilla, J. T., and Klein, D. C., Pineal N-acetyltransferase is inactivated by disulfide-containing peptides: insulin is the most potent, Science, 213, 571, 1981.

Nutritional Significance of Glutathione

The Potential Benefits of Dietary Glutathione on Immune Function and Other Practical Implications

Varnes, N. E. and Bigalow, J. E. , Interactions of the carcinogen 4-nitroquinoline 1-oxide with the nonprotein thiol of mammalian cells, Cancer Res., 39, 2960, 1979.

Harman, D., Free radical theory of aging: beneficial effect of antioxidants on the life span of male NZB mice; role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus, Age, 3, 64, 1980.
Noelle, R. J. and Lawrence, D. A., Determination of glutathione in lymphocytes and possible association of redox state and proliferative capacity of lymphocytes, Biochem. J., 198, 571, 1981.
Imada, O. and Suga, Y., Use of glutathione in yellowtail fish nutrition examined, Feedstuffs, 68, 17, 1986.
Hereditary Disorders in Glutathione Metabolism

Beutler, E., Gelbart, T., and Pegelow, C. J., Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency, Clin. Invest., 77, 38, 1986.

Larsson, A., Wachmeister, L., von Wendt, L., Andersson, R., Hagenfeldt, L., and Herrlin, K. M., Ophthalmological, psychometric and therapeutic investigation in two sisters with hereditary glutathione...
synthetase deficiency (5-oxoprolinuria), Neuropediatrics, 16, 131, 1985.
Garcia-Silva, T., personal communication, 1986.